Subscribe free to our newsletters via your
. 24/7 Space News .




EXO WORLDS
Spiral Structure of Disk May Reveal Planets
by Staff Writers
Tokyo, Japan (SPX) Dec 24, 2012


An image of the disk around SAO 206462 captured with HiCIAO. A coronagraph blocks the direct light of the central star, which appears as the black, circular area in the image. Arrows show the two arms of the spiral structure around the star. (Credit: NAOJ). For a larger version of this image please go here.

An international team of astronomers has used HiCIAO (High Contrast Instrument for the Subaru Next Generation Optics) (Note 1) to observe a disk around the young star SAO 206462. They succeeded in capturing clear, detailed images of its disk, which they discovered has a spiral structure with two discernable arms.

On the basis of their observations and modeling according to spiral density wave theory, the team suspects that dynamic processes, possibly resulting from planets in the disk, may be responsible for its spiral shape. This research may provide the basis for another indirect method of detecting planets.

Scientists have known that planets form in a broad disk of dust and gas surrounding a star, a so-called "protoplanetary disk." However, the composition of these special disks as well as the process by which they give rise to planets have remained a mystery.

The bright light of a central star makes it difficult to detect fainter objects around it or to capture a detailed image of the composition of the disk itself. Recent research with HiCIAO, Subaru Telecope's "planet-hunter", has overcome some of those obstacles. By masking the bright light from the central star, the instrument can then detect more detailed features of the star's disk and the objects that it contains.

As part of the SEEDS project (Strategic Exploration of Exoplanets and Disks with the Subaru Telescope) (Note 2), the researchers in the current study used HiCIAO to conduct observations of the disk around the young star SAO 206462 (sometimes referred to as HD 135344B). This star is about 460 light years away from Earth in the constellation Lupus ("the wolf") and is some 9 million years old.

The radius of the disk is 20 billion kilometers (12.4 billion miles), about five times greater than Neptune's distance from the Sun in our Solar System.

The researchers captured images of SAO 206462's disk (Figure 1) that clearly reveal its spiral structure and indicate some features of its composition. They then were able to analyze its spiral structure by using density wave theory to infer the properties of the disk. This process allows a productive interface between observational data and a theoretical model.

Density wave theory has been applied to explain the spiral arm structure of spiral galaxies. It proposes that a rotating disk of matter would "naturally" develop regions of enhanced density, so-called "spiral density waves", due to differential rotation.

The wave-like concentration of dense material grows and forms a spiral pattern. A similar process may be at work in SAO 206462's disk. When the team compared their model with the observational data, they found that it was useful in revealing the features of the disk. (Figure 2)

The team was able to use the model to estimate the temperature of the disk based on dynamic processes and predict the evolution of the spiral structures. The observational data conform to the model.

Although they could not specifically identify the origin of the spirals, it is possible that planets embedded in the disk may be the catalysts for the development of its shape.

If a planet has already been formed in a disk, its gravity can produce a density wave, which then may result in the creation of a spiral structure in the protoplanetary disk. (Figure 3).

Although the observed image does not necessarily show the existence of a planet, the possibility remains that a planet in the disk causes the density wave. This is the first time that density wave theory has been applied to measuring the features of a protoplanetary disk. The research takes an important step in explaining how a spiral disk could form and may mark the development of another indirect means of discovering planets.

The research paper entitled "Discovery of Small-Scale Spiral Structures in the Disk of SAO 206462 (HD 135344B): Implications for the Physical State of the Disk from Spiral Density Wave Theory" by Muto et al. was published in Astrophysical Journal Letters, April 2012 (ApJ, 748, L22, 2012)

.


Related Links
Subaru
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EXO WORLDS
Closest sun-like star may have planets
Washington DC (SPX) Dec 24, 2012
An international team of scientists, including Carnegie's Paul Butler, has discovered that Tau Ceti, one of the closest and most Sun-like stars, may have five planets. Their work is published by Astronomy and Astrophysics and is available online. At a distance of twelve light years and visible with a naked eye in the evening sky, Tau Ceti is the closest single star with the same spectral classif ... read more


EXO WORLDS
GRAIL Lunar Impact Site Named for Astronaut Sally Ride

NASA probes crash into the moon

No plans of sending an Indian on moon

Rocket Burn Sets Stage for Dynamic Moon Duos' Lunar Impact

EXO WORLDS
Clays on Mars: More Plentiful Than Expected

Opportunity For Some Shoulder Workout At Copper Cliff

Enabling ChemCam to Measure Key Isotopic Ratios on Mars and Other Planets

Curiosity Rover Explores 'Yellowknife Bay'

EXO WORLDS
NASA Puts Orion Backup Parachutes to the Test

White House to honor scientists, inventors

TDRS-K Arrives at Kennedy for Launch Processing

Sierra Nevada Corporation Selected by NASA to Receive Human Spaceflight Certification Products Contract

EXO WORLDS
Mr Xi in Space

China plans manned space launch in 2013: state media

China to launch manned spacecraft

Tiangong 1 Parked And Waiting As Shenzhou 10 Mission Prep Continues

EXO WORLDS
New ISS crew docked at Space Station

Expedition 34 Spends Christmas in Space

Three astronauts blast off for ISS in Russian craft

Soyuz rocket brings trio to space station

EXO WORLDS
Ariane 5 ECA orbits Skynet 5D and Mexsat Bicentenario satellites

Payload integration complete for final 2012 Ariane 5 mission

Arctic town eyes future as Europe's gateway to space

ISRO planning 10 space missions in 2013

EXO WORLDS
Spiral Structure of Disk May Reveal Planets

Closest sun-like star may have planets

Nearby star is good candidate for Earth-like planets

Venus transit and lunar mirror could help astronomers find worlds around other stars

EXO WORLDS
US readers turn increasingly to digital books: study

LG seeks ban on Samsung tablet sales in Korea

2012: Consumer tech takes center stage

Molecular levers may make materials better




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement