Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
Spin Soliton Could Be A Hit In Cell Phone Communication
by Staff Writers
Washington DC (SPX) Sep 17, 2010


The image shows the development of the soliton. Current begins passing through the channel in the center, causing the magnetization to oscillate. These oscillations initially move throughout the layer, but after 1.8 ns the magnetization under the hole inverts to form the soliton (center changes to red) and the oscillations are then localized. Credit: NIST

Researchers at the National Institute of Standards and Technology (NIST) have found theoretical evidence of a new way to generate the high-frequency waves used in modern communication devices such as cell phones.

Their analysis, if supported by experimental evidence, could contribute to a new generation of wireless technology that would be more secure and resistant to interference than conventional devices.

The team's findings point toward an oscillator that would harness the spin of electrons to generate microwaves-electromagnetic waves in the frequencies used by mobile devices.

Electron spin is a fundamental property, in addition to basic electrical charge, that can be used in electronic circuits. The discovery adds another potential effect to the list of spin's capabilities.

The team's work-a novel variation on several types of previously proposed experimental oscillators-predicts that a special type of stationary wave called a "soliton" can be created in a layer of a multilayered magnetic sandwich.

Solitons are shape-preserving waves that have been seen in a variety of media. (They first were observed in a boat canal in 1834 and now are used in optical fiber communications.)

Creating the soliton requires that one of the sandwich layers be magnetized perpendicular to the plane of the sandwiched layers; then an electric current is forced through a small channel in the sandwich. Once the soliton is established, the magnetic orientation oscillates at more than a billion times a second.

"That's the frequency of microwaves," says NIST physicist Thomas Silva. "You might use this effect to create an oscillator in cell phones that would use less energy than those in use today. And the military could use them in secure communications as well.

"In theory, you could change the frequency of these devices quite rapidly, making the signals very hard for enemies to intercept or jam."

Silva adds that the oscillator is predicted to be very stable-its frequency remaining constant even with variations in current-a distinct practical advantage, as it would reduce unwanted noise in the system. It also appears to create an output signal that would be both steady and strong.

The team's prediction also has value for fundamental research.

"All we've done at this point is the mathematics, but the equations predict these effects will occur in devices that we think we can realize," Silva says, pointing out that the research was inspired by materials that already exist.

"We'd like to start looking for experimental evidence that these localized excitations occur, not least because solitons in other materials are hard to generate. If they occur in these devices as our predictions indicate, we might have found a relatively easy way to explore their properties."

M.A. Hoefer, T.J. Silva and M.W. Keller. Theory for a dissipative droplet soliton excited by a spin torque nanocontact. Physical Review B, 82, 054432 (2010), Aug. 30. 2010. DOI: 10.1103/PhysRevB.82.054432

.


Related Links
National Institute of Standards and Technology (NIST)
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Chip revenue expected to grow 31.5 percent in 2010: Gartner
Washington (AFP) Sept 1, 2010
Worldwide semiconductor revenue is expected to grow 31.5 percent this year to 300 billion dollars, technology research firm Gartner said Wednesday. Gartner also forecast computer chip revenue of 314 billion dollars in 2011, a 4.6 percent increase over this year. Worldwide semiconductor revenue totaled 228 billion dollars last year. "Semiconductor growth in the first half of 2010 was very ... read more


CHIP TECH
NASA's Lunar Spacecraft Completes Exploration Mission Phase

Russia To Test Unmanned Lander For Mars Moon Mission

China preps next lunar space mission

Chandrayaan-2 Will Try Out New Ideas And Technologies

CHIP TECH
105 Days In Isolation - And Counting - For 400 More

NASA's Next Mars Rover Rolls Over Ramps

Don't Forget Deimos

Russia to test Mars lander for 2011 flight

CHIP TECH
Boeing inks deal to put tourists in space by 2015

Boeing And Space Adventures To Offer Commercial Spaceflight Opportunities

OS/COMET To Be Used On Orion CEV Project

NSS Calls For House To Adopt Senate Version of NASA Authorization Act Of 2010

CHIP TECH
China's Second Lunar Probe Chang'e-2 To Reach Lunar Orbit Faster Than Chang'e-1

China Finishes Construction Of First Unmanned Space Module

China Contributes To Space-Based Information Access A Lot

China Sends Research Satellite Into Space

CHIP TECH
Russian Mission Control Set To Readjust ISS Orbit

Boeing wins billion dollar NASA extension

NASA Opens Space Station For Biological Research From NIH Grants

Russian cargo vessel docks at International Space Station

CHIP TECH
Sirius XM-5 Satellite Delivered To Baikonur For October Launch

Emerging Technologies May Fuel Revolutionary Launcher

EUMETSAT Chooses Arianespace To Launch Metop-C

Falcon 1e Launch Capabilities Brought To The European Institutional Market

CHIP TECH
This Planet Smells Funny

Scientists looking to spot alien oceans

Deadly Tides Mean Early Exit For Hot Jupiters

Can We Spot Volcanoes On Alien Worlds

CHIP TECH
ARTEMIS - The First Earth-Moon Libration Orbiter

Asia defies global newspaper meltdown

E-readers yet to win mass market in China

Indian handset makers emerge as hyper-competitive force




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement