Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Space Laser To Prove Increased Broadband Possible
by Dewayne Washington for Goddard Space Flight Center
Greenbelt MD (SPX) Sep 03, 2013


Artist's rendering of the LADEE satellite in orbit. Image Credit: NASA.

When NASA's Lunar Laser Communication Demonstration (LLCD) begins operation aboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission managed by NASA's Ames Research Center in Moffett Field, Calif., it will attempt to show two-way laser communication beyond Earth is possible, expanding the possibility of transmitting huge amounts of data. This new ability could one day allow for 3-D High Definition video transmissions in deep space to become routine.

"The goal of the LLCD experiment is to validate and build confidence in this technology so that future missions will consider using it," said Don Cornwell, LLCD manager. "This unique ability developed by MIT (Massachusetts Institute of Technology Lincoln Laboratory), has incredible application possibilities and we are very excited to get this instrument off the ground."

Since NASA first ventured into space, through the moon landings, shuttle program, and unmanned exploration missions, radio frequency communication also known as RF, has been the communications platform used. But RF is reaching its limit just as demand for more data capacity continues to increase. The development of laser communications will give NASA the ability to extend communication applications such as increased image resolution and even 3-D video transmission into deep space.

LLCD is NASA's first dedicated system for two-way communication using laser instead of radio waves. "LLCD is designed to send six times more data from the moon using a smaller transmitter with 25 percent less power as compared to the equivalent state-of-the-art radio (RF) system," said Cornwell. "Lasers are also more secure and less susceptible to interference and jamming."

The LLCD experiment is hosted aboard NASA's LADEE: a 100-day robotic mission designed, built, integrated, tested and will be operated by Ames. LADEE will attempt to confirm whether dust caused a mysterious glow on the lunar horizon astronauts observed during several Apollo missions and explore the moon's tenuous, exotic atmosphere. Launch of the LADEE spacecraft is set for September aboard a U.S. Air Force Minotaur V rocket, an excess ballistic missile converted into a space launch vehicle and operated by Orbital Sciences Corp. of Dulles, Va., from NASA's Wallops Flight Facility on Wallops Island, Va.

The LADEE spacecraft will take 30 days to reach the moon because of its flight path. LLCD will begin operations shortly after arrival into lunar orbit and continue for 30 days afterward.

LLCD's main mission objective is to transmit hundreds of millions of bits of data per second from the moon to Earth. This is equivalent to transmitting more than 100 HD television channels simultaneously. LLCD receiving capability will also be tested as tens of millions of bits per second are sent from Earth to the spacecraft. These demonstrations will prove the technology for increased bandwidth for future missions is possible.

There is a primary ground terminal at NASA's White Sands Complex in New Mexico, to receive and transmit LLCD signals. The team at MIT designed, built, and tested the terminal. They also will be responsible for LLCD's operation at that site.

There are two alternate sites, one located at NASA's Jet Propulsion Laboratory in California, which is for receiving only. The other is being provided by the European Space Agency on the Spanish island of Tenerife, off the coast of Africa. It will have two-way communication capability with LLCD. "Having several sites gives us alternatives which greatly reduces the possibility of interference from clouds," said Cornwell.

LLCD is a short duration experiment and the precursor to NASA's long duration demonstration, the Laser Communications Relay Demonstration (LCRD). It also is a part of the agency's Technology Demonstration Missions Program, which is working to develop crosscutting technology capable of operating in the rigors of space. LCRD is scheduled to launch in 2017.

NASA engineers believe this technology becomes even more advantageous for communications beyond Earth's orbit. In the past, NASA has experimented with sending low amounts of individual pulses to cameras on far-away space probes near Jupiter, Mars, and Mercury.

Recently, an image of Leonardo da Vinci's painting, the Mona Lisa, was transmitted to NASA's Lunar Reconnaissance Orbiter (LRO) spacecraft orbiting the moon. "But this was done at only hundreds of data bits per second," said Cornwell. "LLCD will be the first dedicated optical communication system and will send data millions of times faster."

The European Space Agency already has successfully demonstrated laser communication between satellites in Earth orbit. Recently they launched Alphasat to demonstrate laser transmission between a low-earth orbit satellite and a satellite in geostationary Earth orbit. LLCD's laser link from the moon will be ten times farther away.

NASA is looking upon laser communication as the next paradigm shift in future space communication, especially deep space. "We can even envision such a laser-based system enabling a robotic mission to an asteroid," said Cornwell. "It could have 3-D, high-definition video signals transmitted to Earth providing essentially 'telepresence' to a human controller on the ground."

.


Related Links
Lunar Atmosphere and Dust Environment Explorer
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Boeing Communications Relay Satellites Complete Space, Earthly Testing
El Segundo CA (SPX) Aug 22, 2013
Two Boeing Tracking and Data Relay Satellites (TDRS) have completed testing milestones - one in space and the other on Earth - marking more progress in enhancing the tracking and communications network used by NASA and its customers. The orbiting TDRS-K satellite has completed all testing since its January launch and has officially been handed over to NASA, providing another vital informat ... read more


TECH SPACE
NASA Prepares for First Virginia Coast Launch to Moon

NASA Selects Launch Services Contract for OSIRIS-REx Mission

Environmental Controls Move Beyond Earth

Bad night's sleep? The moon could be to blame

TECH SPACE
We may all be Martians

Mars Curiosity Debuts Autonomous Navigation

Scouting a Boulder Field

ASA Mars Rover Views Eclipse of the Sun by Phobos

TECH SPACE
NASA awards nearly $1.5B in support contracts

NSBRI and NASA Reduce Space Radiation Risks by Soliciting for Center of Space Radiation Research

Next Generation of Explorers Takes the Stage

Has Voyager 1 Left The Solar System?

TECH SPACE
China to launch lunar lander by end of year: media

China launches three experimental satellites

Medical quarantine over for Shenzhou-10 astronauts

China's astronauts ready for longer missions

TECH SPACE
Cosmonauts Complete Spacewalk, Unfold Russian Flag in Space

Italian astronaut recounts spacewalk drowning terror

ISS Boosting Biological Research in Orbit

Japanese Cargo Craft Captured, Berthed to ISS

TECH SPACE
Ariane 5 build-up is completed for Arianespace upcoming flight with EUTELSAT

Russian rocket engine export ban could halt US space program

The go-ahead is given for Ariane 5 mission to orbit EUTELSAT 25B/Es'hail 1 and GSAT-7

Arianespace Launches EUTELSAT 25B/Es'hail 1 and GSAT 7

TECH SPACE
Waking up to a new year

Study: Planets might be 'born free' without a parent star

Distant planet sets speed record by orbiting its star every 8.5 hours

Kepler planet hunter spacecraft is beyond repair: NASA

TECH SPACE
Space Laser To Prove Increased Broadband Possible

Computer Simulations Indicate Calcium Carbonate Has a Dense Liquid Phase

Creating a Secure, Private Internet and Cloud at the Tactical Edge

Sticking power of plant polyphenols used in new coatings




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement