Subscribe free to our newsletters via your
. 24/7 Space News .




SOLAR SCIENCE
Solar Wind Workhorse Marks 20 Years of Science Discoveries
by Karen C. Fox for Goddard Space Flight Center
Greenbelt MD (SPX) Dec 30, 2014


illustration only

The end of 2014 marks two decades of data from a NASA mission called Wind. Wind -- along with 17 other missions - is part of what's called the Heliophysics Systems Observatory, a fleet of spacecraft dedicated to understanding how the sun and its giant explosions affect Earth, the planets and beyond.

Wind launched on Nov. 1, 1994, with the goal of characterizing the constant stream of particles from the sun called the solar wind. With particle observations once every 3 seconds, and 11 magnetic measurements every second, Wind measurements were - and still are - the highest cadence solar wind observations for any near-Earth spacecraft.

During its more than 20 years in space, Wind has taken up position at various spots around our planet to help determine how near-Earth space interacts with incoming energy and particles from the sun. Assessing the complex variations of the charged particles making up the solar wind cannot be done from a single point in space.

That would be like trying to understand the entire Earth's weather system from a single collection station in Washington, D.C. So, Wind was part of a game changing idea: launch several missions to work in tandem to understand how the dynamic magnetosphere surrounding Earth reacts to the sun. Sitting at a point between Earth and the sun, Wind was the vanguard, observing the solar wind.

"We had a fairly simple original objective," said Adam Szabo, the project scientist for Wind at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "The number one question was to find out how the solar wind was driving changes in the magnetosphere."

The original flotilla, named the Global Geospace Science (GGS) campaign, was composed of the Polar spacecraft observing Earth's magnetosphere in high latitudes, Equator-S making equatorial magnetospheric measurements, and the Japanese Geotail patrolling the elongated magnetotail -- the long ribbon of magnetosphere that trails behind Earth, away from the sun. The original GGS program was rapidly extended with additional missions to form the International Solar Terrestrial Program, or ISTP.

With its mandate to watch the frontlines, Wind was sent into orbit around what's called a Lagrangian point, a point that experiences balanced gravity from both the sun and Earth. Wind took up residence in an elliptical orbit around the first Langrangian point (L1), lying between Earth and the sun, some 932,000 miles away from Earth. While several satellites have since been in a similar orbit, Wind was only the second spacecraft ever to orbit L1.

In 1997, another solar wind monitor joined the L1 neighborhood. The Advanced Composition Explorer, or ACE, was designed both to measure properties of the incoming solar wind, and to give scientists advanced notice of larger, more intense eruptions from the sun, such as coronal mass ejections, or CMEs.

At their worst, CMEs can compress the magnetosphere so severely that satellites suddenly find themselves outside that protective bubble, exposed to harsh solar radiation. The compression can also set off vibrations in the magnetosphere that can induce electrical surges in power grids on Earth.

NASA decided to take advantage of having two spacecraft monitoring the solar wind by moving Wind to the second Lagrange point (L2), a point on the other side of Earth from the sun. L2 is some 1.1 million miles down the magnetotail, four times the distance to the moon. From this new location, Wind was able to provide measurements from deeper in the magnetotail than any other missions have done.

Working together, ACE and Wind unraveled even more mysteries about the solar wind, helping answer questions such as, did the observations on one side correlate to what was happening on the other? Did any particular occurrence stay coherent over long distances or did they change as they moved?

During this time frame, the ISTP missions helped scientists understand more about the size of events in the magnetosphere. At a distance of under 90,000 miles, what one satellite observed could be correlated to measurements from the other. That means that knowing what one satellite saw could perhaps be used to predict what might be seen elsewhere in the magnetosphere, as long as it was less than 90,000 miles away. At greater distances, however, any given blast of energy or particles moving through the magnetosphere simply changed too much to be predictable.

From 2000-2003, Wind moved through a variety of positions, including off to the side of the magnetosphere, 1.5 million miles away from Earth, and a return trip to the magnetotail. In 2004, Wind was moved back to the L1 point permanently.

"In its position at L1, Wind has witnessed a handful of first ever sightings of different kinds of electromagnetic waves traveling by in the solar wind," said Lynn Wilson, deputy project scientist for Wind at Goddard. "In space where a particle could travel 100 million miles before hitting another one, these waves simply can't be working the same way sound or water waves do, pushing material along. It has opened up whole areas of research trying to understand these unexpected properties."

Wind continues to work with other spacecraft -- and is even looking to the future. In 2018, NASA will launch a new mission called Solar Probe Plus that will go to within 3.8 million miles of the sun to explore what happens within the solar wind near the sun.

One big mystery is the question of what keeps the solar wind heated. One would think that the solar wind would cool down as it expands and travels away from the sun, but it remains hotter than expected. Some intrinsic activity within the wind must continue to generate heat. It is known that magnetic reconnection - a process in which magnetic energy is converted into heat and acceleration of particles - is part of the process. In sync with this endeavor, Wind has searched for the signatures of magnetic reconnection closer to home.

"The question we had was whether magnetic reconnection could ever happen in the low density solar wind, where things are not as dynamic as in the sun's atmosphere," said Szabo. "Wind found signatures of reconnection, but they weren't violent reactions like what happens closer to the sun. These were subtle, lower energy events, and the signature were thin streams of particles accelerating outward, which we call reconnection jets."

These jets last for such short periods of time that the 3-second data collection on Wind is just barely fast enough to capture them - an example of how Wind's high cadence measurements still shine 20 years after launch, and how its mission continues to offer important data for scientists.

Despite having a planned mission of five years, Wind was built with the hope of lasting much longer. Wind has enough fuel to keep it in orbit around L1 until 2074, and every effort has been made to reduce stress on its instruments in order to maintain their longevity. At 20 years, it is still going strong and helping scientists understand the forces that buffet near-Earth space.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Wind Mission at NASA
Solar Science News at SpaceDaily






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR SCIENCE
Sun Sizzles in High-Energy X-Rays
Pasadena CA (JPL) Dec 26, 2014
For the first time, a mission designed to set its eyes on black holes and other objects far from our solar system has turned its gaze back closer to home, capturing images of our sun. NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, has taken its first picture of the sun, producing the most sensitive solar portrait ever taken in high-energy X-rays. "NuSTAR will give us a unique loo ... read more


SOLAR SCIENCE
'Shooting the Moon' with Satellite Laser Ranging

Moon Express testing compact lunar lander at Kennedy

UK Plans to Drill Into Moon, Explore Feasibility of Manned Base

Carnegie Mellon Unveils Lunar Rover "Andy"

SOLAR SCIENCE
Mars rover Opportunity suffering from 'amnesia' says NASA

Mars mission boost welcomed by scientists

U.K. researchers plan to grow lettuce on Mars

Tales from a Martian Rock

SOLAR SCIENCE
NASA Glenn Research Center Completes Stirling Generator

Challenges for Orion and SLS

ISRO to study data in crew module's 'black box'

SpaceX Completes First Milestone for Commercial Crew System

SOLAR SCIENCE
China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

China develops new rocket for manned moon mission: media

Service module of China's returned lunar orbiter reaches L2 point

SOLAR SCIENCE
The worst trip around the world

Bright lights: big cities at night

NASA, SpaceX Update Launch of Fifth SpaceX Resupply Mission to ISS

Fifth SpaceX Mission Lets the CATS Out on the International Space Station

SOLAR SCIENCE
Russia Launches Soyuz-2.1b Rocket Carrying Satellite: Defense Ministry

Russia Launches European Communications Satellite Atop Proton-M Rocket

SpaceX to attempt landing a rocket on ocean platform

Soyuz Installed at Baikonur, Expected to Launch Wednesday

SOLAR SCIENCE
Stretched-out solid exoplanets

Kepler Proves It Can Still Find Planets

NASA's Kepler Reborn, Makes First Exoplanet Find of New Mission

Super-Earth spotted by ground-based telescope, a first

SOLAR SCIENCE
New algorithm a Christmas gift to 3D printing - and the environment

Breakthrough in predictions of pressure-dependent combustion reactions

Gecko Grippers Get a Microgravity Test Flight

Atom-high steps halt oxidation of metal surfaces




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.