Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Shockwave findings set to rewrite scientific theories
by Staff Writers
Leicester, UK (SPX) May 02, 2014


This is Dr. Klaas Wiersema of the University of Leicester's Department of Physics and Astronomy. Image courtesy Dr. Klaas Wiersema.

Research from an international team of scientists led by the University of Leicester has discovered for the first time that one of the most powerful events in our universe - Gamma-Ray Bursts (GRB) - behave differently than previously thought.

The study, published in the prestigious scientific journal Nature, uses evidence from observation of a GRB to rule out most of the existing theoretical predictions concerning the afterglow of the explosions.

For Dr Klaas Wiersema, of the University of Leicester's Department of Physics and Astronomy, it was handy that he was up in the middle of the night tending to his three-year-old son which is when he got the alert that a GRB had occurred.

He said: "When a suitable GRB is detected by a satellite, I get a text message on my phone, and then I have to very quickly tell the observatory in Chile exactly which observations I want them to take, and how.

"This is usually a rather stressed and frantic few hours of working, as fast as possible, on my laptop throughout our night-time - and I remember very well that my son, who was three at the time, was up a lot that night too, so I kept on running back and forth between my laptop, my phone to call the observatory in Chile, and my son's cot!"

The effort was worth it- and has led to scientific findings that will change theoretical understandings of the afterglows of GRBs.

Dr Wiersema explains: "About once per day, a short, very bright flash of gamma-rays (the most energetic form of light) is detected by satellites. These flashes are called gamma-ray bursts (GRBs), and take place in galaxies far away, when a massive star collapses at the end of its life.

"These GRBs are followed by a so-called "afterglow", slowly fading emission that can be seen at all wavelengths (including visible light), for a few days to weeks. We know that the afterglow emission is formed by a shockwave, moving at very high velocities, in which electrons are being accelerated to tremendous energies. These fast moving electrons then produce the afterglow light that we detect.

"However, how this acceleration process actually works is very hard to study on Earth in laboratories, or using computer simulations. What we do, is study the polarised light of the afterglow using large optical telescopes, and special filters, that work much like the filters in Polaroid sunglasses."

So what is polarised light? Dr Wiersema says it is important to remember that light is a wave - when light is linearly polarised, it means that the wave vibrations lie in a plane; and when light is circularly polarised, it means that that this plane rotates on the sky.

He added: "Different theories for electron acceleration and light emission within the afterglow all predict different levels of linear polarisation, but theories all agreed that there should be no circular polarisation in visible light. This is where we come in: we decided to test this by carefully measuring both the linear and circular polarisation of one afterglow, of GRB 121024A, detected by the Swift satellite.

"Using the Very Large Telescope (VLT) in Chile, we measured both the linear and circular polarisation of an afterglow with high accuracy. Much to our surprise we clearly detected circular polarisation, while theories predicted we should not see any at all. We believe that the most likely explanation is that the exact way in which electrons are accelerated within the afterglow shockwave is different from what we always thought. It is a very nice example of observations ruling out most of the existing theoretical predictions - exactly why observes like me are in this game!

"We are the first team to realise the importance of trying these technically difficult circular polarisation measurements at visible wavelengths - most people simply assumed it wouldn't be worthwhile doing as theory predicted levels too low to be detectable. The detection of far stronger circular polarisation than expected makes it a particularly surprising result.

"We believe that this detection means that most of the current theories of how electrons get accelerated in afterglows need re-examining."

Dr Wiersema said the research was also important because taking these high precision measurements of a rapidly fading afterglow is very difficult from a technical point of view. The research represents a great technological achievement, one the team would love to repeat for more sources.

"Extreme shocks like the ones in GRB afterglows are great natural laboratories to push our understanding of physics beyond the ranges that can be explored in laboratories," said Dr Wiersema.

.


Related Links
University of Leicester
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
NASA's Fermi Makes First Gamma-ray Study of a Gravitational Lens
Greenbelt MD (SPX) Jan 07, 2014
An international team of astronomers, using NASA's Fermi observatory, has made the first-ever gamma-ray measurements of a gravitational lens, a kind of natural telescope formed when a rare cosmic alignment allows the gravity of a massive object to bend and amplify light from a more distant source. This accomplishment opens new avenues for research, including a novel way to probe emission r ... read more


STELLAR CHEMISTRY
John C. Houbolt, Unsung Hero of the Apollo Program, Dies at Age 95

NASA Completes LADEE Mission with Planned Impact on Moon's Surface

Russia plans to get a foothold in the Moon

Russian Federal Space Agency is elaborating Moon exploration program

STELLAR CHEMISTRY
Target on Mars Looks Good for NASA Rover Drilling

Mars Rover Switches to Driving Backwards Due to Elevated Wheel Currents

Mission to Mars

Traces of recent water on Mars

STELLAR CHEMISTRY
Boeing Showcases Future Commercial Spacecraft Interior

Orion Undergoes Simulation Of Intense Launch Vibrations

Orion Exploration Design Challenge Winner Announced

Orion Feels the Vibe During Tests at Kennedy Space Center

STELLAR CHEMISTRY
China issues first assessment on space activities

China launches experimental satellite

Tiangong's New Mission

"Space Odyssey": China's aspiration in future space exploration

STELLAR CHEMISTRY
NASA Seeks to Evolve ISS for New Commercial Opportunities

Astronauts Complete Short Spacewalk to Replace Backup Computer

No Official Confirmation of NASA Severing Ties with Russian Space Agency

Astronauts Prep for Spacewalk as Mission Managers Evaluate Busy Schedule

STELLAR CHEMISTRY
Elon Musk halts deal between USAF and Russian rocket-makers

Second O3b satellite cluster delivered for upcoming Arianespace Soyuz launch

Court blocks US plan to buy Russian rocket engines

It's a "go" for Arianespace's Vega launch with Kazakhstan's first Earth observation satellite

STELLAR CHEMISTRY
Length of Exoplanet Day Measured for First Time

Spitzer and WISE Telescopes Find Close, Cold Neighbor of Sun

Alien planet's rotation speed clocked for first time

Seven Samples from the Solar System's Birth

STELLAR CHEMISTRY
Sierra Nevada Corporation Completes and Delivers Satellites for ORBCOMM Mission 1 Launch

Coming soon: a brain implant to restore memory

Raytheon developing the world's most advanced digital radar

Training range simulators in Britain, Canada getting support from Cubic




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.