Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Shining a light on the elusive 'blackbody' of energy research
by Staff Writers
Chestnut Hill MA (SPX) Jul 26, 2011


A designer metamaterial has shown it can engineer emitted "blackbody" radiation with an efficiency beyond the natural limits imposed by the material's temperature, a team of researchers report in Physical Review Letters. Illustration shows design of the infrared metamaterial absorber. (a) Top view of a single band metamaterial absorber unit cell. (b) Schematic of a dual-band metamaterial absorber. (c and d) Perspective view for single and dual-band metamaterial absorbers. Credit: Physical Review Letters

A designer metamaterial has shown it can engineer emitted "blackbody" radiation with an efficiency beyond the natural limits imposed by the material's temperature, a team of researchers led by Boston College physicist Willie Padilla report in the current edition of Physical Review Letters.

A "blackbody" object represents a theorized ideal of performance for a material that perfectly absorbs all radiation to strike it and also emits energy based on the material's temperature. According to this blackbody law, the energy absorbed is equal to the energy emitted in equilibrium.

The breakthrough reported by Padilla and colleagues from Duke University and SensorMetrix, Inc., could lead to innovative technologies used to cull energy from waste heat produced by numerous industrial processes. Furthermore, the man-made metamaterial offers the ability to control emissivity, which could further enhance energy conversion efficiency.

"For the first time, metamaterials are shown to be able to engineer blackbody radiation and that opens the door for a number of energy harvesting applications," said Padilla. "The energy a natural surface emits is based on its temperature and nothing more. You don't have a lot of choice. Metamaterials, on the other hand, allow you to tailor that radiation coming off in any desirable manner, so you have great control over the emitted energy."

Researchers have long sought to find the ideal "blackbody" material for use in solar or thermoelectric energy generation. So far, the hunt for such a class of thermal emitters has proved elusive. Certain rare earth oxides are in limited supply and expensive, in addition to being almost impossible to control. Photonic crystals proved to be inferior emitters that failed to yield significant efficiencies.

Constructed from artificial composites, metamaterials are designed to give them new properties that exceed the performance limits of their actual physical components and allow them to produce "tailored" responses to radiation. Metamaterials have exhibited effects such as a negative index of refraction and researchers have combined metamaterials with artificial optical devices to demonstrate the "invisibility cloak" effect, essentially directing light around a space and masking its existence.

Three years ago, the team developed a "perfect" metamaterial absorber capable of absorbing all of the light that strikes it thanks to its nano-scale geometric surface features. Knowing that, the researches sought to exploit Kirchoffs's law of thermal radiation, which holds that the ability of a material to emit radiation equals its ability to absorb radiation.

Working in the mid-infrared range, the thermal emitter achieved experimental emissivity of 98 percent. A dual-band emitter delivered emission peaks of 85 percent and 89 percent. The results confirmed achieving performance consistent with Kirchoff's law, the researchers report.

"We also show by performing both emissivity and absorptivity measurements that emissivity and absorptivity agree very well," said Padilla. "Even though the agreement is predicted by Kirchoff's law, this is the first time that Kirchoff's law has been demonstrated for metamaterials."

The researchers said altering the composition of the metamaterial can results in single-, dual-band and broadband metamaterials, which could allow greater control of emitted photons in order to improve energy conversion efficiency.

"Potential applications could lie in energy harvesting area such as using this metamaterial as the selective thermal emitter for thermophotovoltaic (TPV) cells," said Padilla.

"Since this metamaterial has the ability to engineer the thermal radiation so that the emitted photons match the band gap of the semiconductor - part of the TPV cell - the converting efficiency could be greatly enhanced.

In addition to Padilla, the research team included BC graduate student Xianliang Liu, Duke University's Nan Marie Jokerst and Talmage Tyler and SensorMetrix, Inc., researchers Tatiana Starr and Anthony F. Starr.

.


Related Links
Boston College
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Scientists model physics of a key dark-energy probe
Columbus, OH (SPX) Jul 13, 2011
Ohio State University researchers are leveraging powerful supercomputers to investigate one of the key observational probes of "dark energy," the mysterious energy form that is causing the expansion of the universe to accelerate over time. The OSU project, led by Chris Orban, a graduate research fellow in physics at Ohio State's Center for Cosmology and Astro-Particle Physics, focuses on s ... read more


STELLAR CHEMISTRY
Unique volcanic complex discovered on Lunar far side

Moon Express Announces Dr. Alan Stern as Chief Scientist

Northrop Grumman Honored by IEEE for Development of Lunar Module

Two NASA Probes Tackle New Mission: Studying The Moon

STELLAR CHEMISTRY
NASA's Next Mars Rover to Land at Gale Crater

Opportunity Closing In On Spirit Point At Endeavour Crater

MAVEN Mission Completes Major Milestone

NASA says Mars mountain will read like 'a great novel'

STELLAR CHEMISTRY
Graybiel Lab poised for next chapter of space exploration

Space Program Mavens Comment on the Future of Space Exploration

This Time It's Both Rocket Science AND Surgery

NASA Deputy Administrator Is Keynote Speaker At NewSpace 2011

STELLAR CHEMISTRY
Spotlight Time for Tiangong

China launches new data relay satellite

Time Enough for Tiangong

China launches experimental satellite

STELLAR CHEMISTRY
NASA, SpaceX agree on space station flight

Atlantis crew leaves historic flag aboard ISS

Obama dials for pizza, gets space station

NASA Selects Nonprofit to Manage Space Station National Lab Research

STELLAR CHEMISTRY
Russia sends observation satellite into space

NASA inks agreement with maker of Atlas V rocket

Russia launches 2 foreign satellites into orbit

ILS Proton Successfully Launches the SES-3 Satellite for SES

STELLAR CHEMISTRY
Distant planet aurorae modeled

Exoplanet Aurora: An Out-of-this-World Sight

Ten new distant planets detected

Microlensing Finds a Rocky Planet

STELLAR CHEMISTRY
Sharper deeper faster 3D imaging

Rare Coupling of Magnetic and Electric Properties in a Single Material

China closes two fake Apple stores

Closing In On The Famous Pioneer Anomaly




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement