Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Shining A Light On Missing Ordinary Matter
by Staff Writers
College Park MD (SPX) Jan 07, 2010


Just how much less depends systematically on scale, according to the researchers. The smaller an object the further its ratio of ordinary matter to dark matter is from the cosmic mix. McGaugh says their work indicates that the largest bound structures, rich clusters of galaxies, have 14 percent of ordinary baryonic matter, close to expected 17 percent.

An international team of scientists, led by University of Maryland astronomer Stacy McGaugh, has found that individual galactic objects have less ordinary matter, relative to dark matter, than does the Universe as a whole.

Just published in the Astrophysics Journal (e-version), these results were presented by McGaugh during a press conference at the American Astronomical Society Meeting in Washington, D.C.

Scientists believe that all ordinary matter, the protons and neutrons that make up people, planets, stars and all that we can see, are a mere fraction - some 17 percent - of the total matter in the Universe. The protons and neutrons of ordinary matter are referred to as baryons in particle physics and cosmology.

The remaining 83 percent apparently is the mysterious "dark matter," the existence of which is inferred largely from its gravitational pull on visible matter. Dark matter, explains McGaugh "is presumed to be some new form of non-baryonic particle - the stuff scientists hope the Large Hadron Collider in CERN will create in high energy collisions between protons."

McGaugh and his colleagues posed the question of whether the "universal" ratio of baryonic matter to dark matter holds on the scales of individual structures like galaxies.

"One would expect galaxies and clusters of galaxies to be made of the same stuff as the universe as a whole, so if you make an accounting of the normal matter in each object, and its total mass, you ought to get the same 17 percent fraction," he says. "However, our work shows that individual objects have less ordinary matter, relative to dark matter, than you would expect from the cosmic mix; sometimes a lot less!"

Just how much less depends systematically on scale, according to the researchers. The smaller an object the further its ratio of ordinary matter to dark matter is from the cosmic mix. McGaugh says their work indicates that the largest bound structures, rich clusters of galaxies, have 14 percent of ordinary baryonic matter, close to expected 17 percent.

"As we looked at smaller objects - individual galaxies and satellite galaxies, the normal matter content gets steadily less," he says.

"By the time we reach the smallest dwarf satellite galaxies, the content of normal matter is only ~1 percent of what it should be. (Such galaxies' baryon content is ~ 0.2percent instead of 17 percent). The variation of the baryon content is very systematic with scale. The smaller the galaxy, the smaller is its ratio of normal matter to dark matter. Put another way, the smallest galaxies are very dark matter dominated.

"This raises an obvious question," McGaugh says, "where are all these missing baryons? The short answer is, we don't know. There are various lines of speculation, most of which are either easily dismissed or are un-testable. So for now this is a problem without an obvious solution."

Reference: "The Baryon Content of Cosmic Structures," Astrophysical Journal, Stacy S. McGaugh, James M. Schombert, W.J.G. de Blok, Matthew J. Zagursky.

.


Related Links
-
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Astronomers Map The Shape Of Galactic Dark Matter
Los Angeles CA (SPX) Jan 07, 2010
The halo of dark matter surrounding our Milky Way Galaxy is shaped something like a gigantic, flattened cosmic beachball, astronomers has announced. The report is being presented to the meeting of the American Astronomical Society in Washington, DC, by Dr. David R. Law (Hubble Fellow at UCLA) and co-authors Drs. Steven Majewski (University of Virginia) and Kathryn Johnston (Columbia University). ... read more


STELLAR CHEMISTRY
Space Systems Loral To Supply Lunar Mission Propulsion System

Lava tube could house moon colony

Moon Mission In Running For Next Big Space Venture

Obama cuts moon travel, links NASA to private firms

STELLAR CHEMISTRY
Minimal Progress In Recent Extraction Drives

Goddard Scientist Breakthrough Given Ticket To Mars

Mars Spirit Rover Facing End Of Mission Decision

Mars rover Spirit's 6-year stint may be ending: NASA

STELLAR CHEMISTRY
Galactic GPS Possible With Pulsars And Gravity Waves

US still has space ambitions: NASA chief

Chairman Gordon Comments On President's Budget Request

South Korea to send its cuisine into space

STELLAR CHEMISTRY
China Building Large Radio Telescope For Space Observation

China To Launch Civil HD Survey Satellite In 2011

China Launches First Public-Welfare Mini Satellite

Chang'e-1 Has Blazed A New Trail In China's Deep Space Exploration

STELLAR CHEMISTRY
How To Live Long And Prosper In Space

Russia Set To Launch Another Space Truck To ISS

Obama budget extends US commitment to space station

Mini-Research Module MRM1 At Cape For Shuttle Processing

STELLAR CHEMISTRY
Arianespace Poised For 2010 Boost

Booz Allen Hamilton To Transform LA Spacelift Range

Apron Construction Contract Awarded For Spaceport America

Shuttle-Derived Vehicle: Shuttle-Derived Disaster

STELLAR CHEMISTRY
Massive Stars Easy Targets For Planet Hunters

Most Earth-Like Exoplanet Started Out As A Gas Giant

Sun Glints Seen From Space Signal Oceans And Lakes

NASA's Kepler space telescope finds five new exoplanets

STELLAR CHEMISTRY
Toshiba TV adds third dimension to video viewing

Blockbuster 'Avatar' to accelerate 3D revolution

Y2X bugs strikes 30 million German credit cards

Superatom mimicry offers insights to periodic table




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement