Subscribe free to our newsletters via your
. 24/7 Space News .




SOLAR SCIENCE
Second Biggest Flare Of the Solar Cycle
by Karen C. Fox for Goddard Space Flight Center
Greenbelt, MD (SPX) Mar 08, 2012


This movie of the March 6, 2012 X5.4 flare was captured by the Solar Dynamics Observatory (SDO) in the 171 Angstrom wavelength. One of the most dramatic features is the way the entire surface of the sun seems to ripple with the force of the eruption. This movement comes from something called EIT waves - because they were first discovered with the Extreme ultraviolet Imaging Telescope (EIT) on the Solar Heliospheric Observatory.
Since SDO captures images every 12 seconds, it has been able to map the full evolution of these waves and confirm that they can travel across the full breadth of the sun. The waves move at over a million miles per hour, zipping from one side of the sun to the other in about an hour. The movie shows two distinct waves. The first seems to spread in all directions; the second is narrower, moving toward the southeast. Such waves are associated with, and perhaps trigger, fast coronal mass ejections, so it is likely that each one is connected to one of the two CMEs that erupted on March 6. Credit: NASA/SDO/AIA.

NASA models using data from the Solar Terrestrial Relations Observatory (STEREO) and the Solar Heliospheric Observatory (SOHO) have now provided more information about the two CMEs associated with the two March 6 flares.

The first is traveling faster than 1300 miles per second; the second more than 1100 miles per second. NASA's models predict that the CMEs will impact both Earth and Mars, as well as pass by several NASA spacecraft - Messenger, Spitzer, and STEREO-B. The models also predict that the leading edge of the first CME will reach Earth at about 1:25 AM EST on the morning of March 8 (plus or minus 7 hours).

Such a CME could result in a severe geomagnetic storm, causing aurora at low latitudes, with possible disruption to high frequency radio communication, global positioning systems (GPS), and power grids.

The sun erupted with one of the largest solar flares of this solar cycle on March 6, 2012 at 7PM EST. This flare was categorized as an X5.4, making it the second largest flare - after an X6.9 on August 9, 2011 - since the sun's activity segued into a period of relatively low activity called solar minimum in early 2007.

The current increase in the number of X-class flares is part of the sun's normal 11-year solar cycle, during which activity on the sun ramps up to solar maximum, which is expected to peak in late 2013.

About an hour later, at 8:14 PM ET, March 6, the same region let loose an X1.3 class flare. An X1 is 5 times smaller than an X5 flare.

These X-class flares erupted from an active region named AR 1429 that rotated into view on March 2. Prior to this, the region had already produced numerous M-class and one X-class flare.

The region continues to rotate across the front of the sun, so the March 6 flare was more Earthward facing than the previous ones. It triggered a temporary radio blackout on the sunlit side of Earth that interfered with radio navigation and short wave radio.

In association with these flares, the sun also expelled two significant coronal mass ejections (CMEs), which are travelling faster than 600 miles a second and may arrive at Earth in the next few days.

In the meantime, the CME associated with the X-class flare from March 4 has dumped solar particles and magnetic fields into Earth's atmosphere and distorted Earth's magnetic fields, causing a moderate geomagnetic storm, rated a G2 on a scale from G1 to G5. Such storms happen when the magnetic fields around Earth rapidly change strength and shape.

A moderate storm usually causes aurora and may interfere with high frequency radio transmission near the poles. This storm is already dwindling, but the Earth may experience another enhancement if the most recent CMEs are directed toward and impact Earth.

In addition, last night's flares have sent solar particles into Earth's atmosphere, producing a moderate solar energetic particle event, also called a solar radiation storm.

These particles have been detected by NASA's SOHO and STEREO spacecraft, and NOAA's GOES spacecraft. At the time of writing, this storm is rated an S3 on a scale that goes up to S5. Such storms can interfere with high frequency radio communication.

Besides the August 2011 X-class flare, the last time the sun sent out flares of this magnitude was in 2006. There was an X6.5 on December 6, 2006 and an X9.0 on December 5, 2006. Like the most recent events, those two flares erupted from the same region on the sun, which is a common occurrence.

.


Related Links
Solar Terrestrial Relations Observatory
Solar Science News at SpaceDaily






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR SCIENCE
Flying Through a Geomagnetic Storm
Huntsville AL (SPX) Mar 07, 2012
Glowing green and red, shimmering hypnotically across the night sky, the aurora borealis is a wonder to behold. Longtime sky watchers say it is the greatest show on Earth. It might be the greatest show in Earth orbit, too. High above our planet, astronauts onboard the International Space Station (ISS) have been enjoying an up-close view of auroras outside their windows as the ISS flys thro ... read more


SOLAR SCIENCE
Looking at the Man in the Moon

Lunar lander firing up for touchdown

China to launch moon-landing orbiter in 2013

Scientists Shed Light On Lunar Impact History

SOLAR SCIENCE
Community College Scholars Selected to Design Rovers

Slight Cleaning of Opportunity Mars Rover Solar Panels

Surface of Mars an unlikely place for life after 600 million year drought

Camera on NASA Mars Odyssey Tops Decade of Discovery

SOLAR SCIENCE
Weird and wonderful gadgets wow world's top IT fair

O, Pioneers! (part 2): The Derelicts of Space

Workers Remove Apollo-era Engines from Crawler at VAB

NASA Conducts New Parachute Test for Orion

SOLAR SCIENCE
China hopes to send Long March-5 rocket into space in 2014

Upgraded carrier rocket ready for China's first manned space docking

Long March 7 carrier rocket to lift off in five years

Logistics, recycling key to China's space station

SOLAR SCIENCE
New date set for Europe's resupply mission to ISS

A New Website Sharing ISS Benefits For Humanity

Harper Government renews commitment to ISS

Laptop theft did not put space station in peril: NASA

SOLAR SCIENCE
Lockheed Martin Selects Alaska's Kodiak Launch Complex To Support Future Athena Launches

The initial Ariane 5 for launch in 2012 completes its final assembly

Arianespace maintains its open dialog with the space insurance sector

SwRI and XCOR agree to pioneering research test flight missions

SOLAR SCIENCE
Researchers say galaxy may swarm with 'nomad planets'

New model provides different take on planetary accretion

A Planetary Exo-splosion

Extending the Habitable Zone for Red Dwarf Stars

SOLAR SCIENCE
Cebit 2012: 3D animations for everyone

Apple unveils new iPad, Apple TV box

Iowa State engineer discovers spider silk conducts heat as well as metals

IBM making the Louvre Museum smarter




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement