Subscribe free to our newsletters via your
. 24/7 Space News .

Search for 'unparticles' focuses on Earth's crust
by Edwin Cartlidge for Institute of Physics
London, UK (SPX) Feb 26, 2013

How to find unparticles.

Evidence of a minuscule force that could exist between two particle spins over long distances could be lurking in magnetized iron under the Earth's surface. That is the conclusion of a new study by physicists in the US, who have used our planet's vast stores of polarized spin to place exacting limits on the existence of interactions mediated by unusual entities such as "unparticles".

The intrinsic angular momentum, or "spin", of a particle gives that particle a magnetic moment, and the interaction between spins generates magnetism. A ferromagnet, such as iron, becomes magnetized when the spins of some of the electrons in its constituent atoms line up, while quantum mechanics tells us that the magnetic force between spins results from the electrons exchanging "virtual" photons.

Some theoretical physicists have suggested that other, as-yet-undiscovered particles might be exchanged virtually and so give rise to new types of spin-spin interaction. In 2007, for example, Howard Georgi of Harvard University proposed the existence of unparticles, which would have the unusual property that their masses would scale with energy or momentum.

Searching in the lab
To date, physicists have searched for such interactions using laboratory-based sources of particles with polarized spin - the idea being to monitor any change in the energy associated with the spins as their polarization is shifted relative to that of a set of particle spins in a detector. So far, such tests have come up empty-handed, but researchers continue to make their devices ever-more sensitive in order to progressively reduce the maximum strength that such a force could have.

In the latest work, Larry Hunter and colleagues at Amherst College in Massachusetts, together with Jung-Fu Lin of the University of Texas, Austin, use the Earth, rather than a laboratory device, as the source of polarized spins. The idea is to use the spins from unpaired electrons in the iron present in the Earth's crust and mantle that are lined up by the planet's magnetic field.

A disadvantage of this approach is that these spins are, on average, thousands of kilometres from any detector, thus rendering the interaction between individual spins far weaker than would be the case with a lab-based source.

But Hunter and colleagues worked out that this drawback should be more than compensated for by the sheer quantity of aligned spins in the Earth (they calculate that there should be some 1042 spins) and the fact that some of the interactions hypothesized by theorists drop off relatively slowly - in inverse proportion to the distance or the distance squared, rather than the distance cubed as is the case with magnetic-dipole fields.

Experiments in a spin
To put their approach into practice, the researchers were able to use results from three existing experiments. Two of these - one at the University of Washington, Seattle, and another, operated by Hunter's group, at Amherst - were designed to measure a tiny hypothetical angular dependence of the laws of physics known as Lorentz-symmetry violation.

The fact that the detectors in these experiments were placed on a rotating turntable makes them also well suited to measuring any long-range interaction with spins in the Earth's interior. The polarization of the source - the Earth - is not reversible, but the polarization of the detector is.

The researchers also made a map of the Earth's polarized electron spins, drawing on data that showed the variation of temperature, magnetic-field direction and magnitude, and unpaired-electron density throughout the Earth.

They then calculated the potentials associated with each of the anomalous spin interactions, integrating across the whole of the Earth and working out the effect of these potentials on the detectors in Seattle and Amherst. In this way they were able to reduce the upper limit of the forces associated with the exchange of unparticles, as well as with particles known as axial bosons, by a factor of a million.

"In our obscure business of precision measurements it might take a decade to improve the sensitivity of an experiment by an order of magnitude," says Hunter, "so using just laboratory sources it might have taken 60 years to get to the limits we did."

Better off in Thailand
Hunter says that his group could further increase the sensitivity of its experiment by a couple of orders of magnitude once it has corrected a number of "systematic effects", and he believes that rival groups might arrive at similar sensitivities.

He also points out that further improvements could be made by placing the experiments in a more-suitable location, estimating that the stronger and better-aligned magnetic field that exists in southern Thailand would lead to a doubling in sensitivity compared with that attainable in Amherst.

Hunter adds that the discovery of a new long-range spin-spin force might also lead to improved mapping of iron concentrations in the lower mantle, given the limited data available from more conventional geophysical and geochemical observations.

"Clever and creative"
Derek Jackson Kimball of California State University, East Bay, describes the latest work as "a remarkably clever and creative new approach to the ongoing search for new fundamental forces of nature", adding that it "will surely be useful for guiding the development of new theories and experiments that seek to explore physics beyond the Standard Model".

Meanwhile, Eric Adelberger of the University of Washington says that when he first heard about the Amherst work, he was "amazed at the large claimed size of the Earth's spin source and was sceptical" about the researchers' claims.

But he says he changed his opinion once he read the research in detail. "Their work is a real contribution," he adds. "The moral is not to trust one's 'gut reaction' - in my case that the effect was not large enough to be interesting - but to undertake a real calculation."

The research is published in Science.


Related Links
Institute of Physics
Understanding Time and Space

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

First Three-Year LHC Running Period Reaches A Conclusion
Geneva, Switzerland (SPX) Feb 18, 2013
At 7:24 a.m., the shift crew in the CERN [1] Control Center extracted the beams from the Large Hadron Collider, bringing the machine's first three-year running period to a successful conclusion. The LHC's first run has seen major advances in physics, including the discovery of a new particle that looks increasingly like the long-sought Higgs boson, announced on 4 July 2012. And during the ... read more

Water On The Moon: It's Been There All Along

Building a lunar base with 3D printing

US, Europe team up for moon fly-by

Russia to Launch Lunar Mission in 2015

Lab Instruments Inside Curiosity Eat Mars Rock Powder

First-ever space tourist plans mission to Mars

Mars rover ingests rock powder for tests

Opportunity Is On A Rock Hunt

Stanford scientist closes in on a mystery that impedes space exploration

U.S. research to be free online

NASA Creates Space Technology Mission Directorate

Educator Teams Fly On NASA Sofia Airborne Observatory

Welcome Aboard Shenzhou 10

Reshuffle for Tiangong

China to launch 20 spacecrafts in 2013

Mr Xi in Space

Record Number of Students Control ISS Camera

NASA briefly loses contact with space station

Temporary Comm Loss Interrupts Crew's Day

Low-Gravity Flights Will Aid ISS Fluids and Combustion Experiments

'Faulty Ukrainian Parts' Blamed for Zenit Launch Failure

The light-lift member of Arianespace's launcher family is readied for its second mission

SpaceX 2 Launch Set for March 1

NASA Releases Glory Taurus XL Launch Failure Report Summary

Scientists spot birth of giant planet

NASA's Kepler Mission Discovers Tiny Planet System

Kepler helps astronomers find tiny exo planet

Searching for a Pale Blue SPHERE in the Universe

Ancient Egyptian pigment points to new security ink technology

Laser mastery narrows down sources of superconductivity

In probing mysteries of glass, researchers find a key to toughness turns heads with 3-D iPad app

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement