Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Scientists trick iron-eating bacteria into breathing electrons instead
by Staff Writers
Washington DC (SPX) Jan 31, 2013


File image.

Scientists have developed a way to grow iron-oxidizing bacteria using electricity instead of iron, an advance that will allow them to better study the organisms and could one day be used to turn electricity into fuel. The study will be published on mBio, the online open-access journal of the American Society for Microbiology.

The method, called electrochemical cultivation, supplies these bacteria with a steady supply of electrons that the bacteria use to respire, or "breathe". It opens the possibility that one day electricity generated from renewable sources like wind or solar could be funneled to iron oxidizing bacteria that combine it with carbon dioxide to create biofuels, capturing the energy as a useful, storable substance.

"It's a new way to cultivate a microorganism that's been very difficult to study. But the fact that these organisms can synthesize everything they need using only electricity makes us very interested in their abilities," says Daniel Bond of the BioTechnology Institute at the University of Minnesota - Twin Cities, who co-authored the paper with Zarath Summers and Jeffrey Gralnick.

To "breathe", iron oxidizers take electrons off of dissolved iron, called Fe(II) - a process that produces copious amounts of rust, called Fe(III). Iron-oxidizing bacteria are found around the world, almost anywhere an aerobic environment (with plenty of oxygen) meets an anaerobic environment (which lacks oxygen).

They play a big role in the global cycling of iron and contribute to the corrosion of steel pipelines, bridges, piers, and ships, but their lifestyle at the interface of two very different habitats and the accumulation of cell-trapping Fe(III) makes iron oxidizers difficult to grow and study in the lab.

Scientists think these bacteria must carry out the iron oxidation step on their surfaces. If that's true, Bond reasoned, the outsides of the organisms should be covered with proteins that interact with Fe(II), so you should be able to provide a stream of pure electrons to the outsides of the bacteria and get them to grow.

Bond and his colleagues added the marine iron oxidizer Mariprofundus ferrooxydans PV-1, along with some nutrient medium, to an electrode carefully tuned to provide electrons at the same energy level, or potential, as Fe(II) would provide. The idea, says Bond, was to "fool the bacteria into thinking they're at the world's best buffet of Fe(II) atoms."

It worked. The bacteria multiplied and formed a film on the electrode, Bond says, and eventually they were able to grow M. ferrooxydans with no iron in the medium, proof that the bacteria were living off the electrons they absorbed from the electrode to capture carbon dioxide and replicate. And since the electron donor is a solid surface, say the authors, it's pretty likely that the bacterial electron-harvesting machinery is exposed on the outer membrane of the cell.

It's this capture of carbon dioxide that could enable electrochemical cultivation to create biofuels or other useful products one day, Bond says.

"Bacteria are experts at the capture of carbon dioxide. They build cells and compounds" with the carbon, he says. They might one day be exploited as microscopic energy packagers: bacteria like M. ferrooxydans could capture electricity from an electrode, combine it with carbon dioxide, and package it as a carbon-rich compound we could use as fuel. This would take the energy in electricity, which is ephemeral, and convert it into a tangible product that could be stored in a tank. But that kind of work is a long way off, cautions Bond.

"If there are 100 steps to making this work - this is step one," he says

.


Related Links
American Society for Microbiology
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Demagnetization by rapid spin transport
Munich, Germany (SPX) Jan 31, 2013
For purposes of their research, the scientists irradiated two separate layered systems with ultrashort laser pulses on the order of just one hundred femtoseconds (10-15 s). One sample consisted essentially of a single thin layer of ferromagnetic nickel. By contrast, a second sample of this same nickel material was coated with a non-magnetic layer of gold. Only a mere 30 nanometers (10-9 m) ... read more


TECH SPACE
US, Europe team up for moon fly-by

Russia to Launch Lunar Mission in 2015

US, Europe team up for moon fly-by

Mission would drag asteroid to the moon

TECH SPACE
Ridges on Mars suggest ancient flowing water

Changes on Mars Caused by Seasonal Thawing of CO2

Is there life on Mars?

Opportunity At Work At Whitewater Lake

TECH SPACE
Companies prepare commercial spacecraft

NASA to recycle parts for science work

TDRS-K Offers Upgrade to Vital Communications Net

How to predict the future of technology

TECH SPACE
Reshuffle for Tiangong

China to launch 20 spacecrafts in 2013

Mr Xi in Space

China plans manned space launch in 2013: state media

TECH SPACE
NASA to Send Inflatable Pod to International Space Station

ISS to get inflatable module

ESA workhorse to power NASA's Orion spacecraft

Competition Hopes To Fine Tune ISS Solar Array Shadowing

TECH SPACE
Spacecom And Spacex Announce Agreement For Amos-6 Satellite Launch

S. Korea joins global space club with satellite launch

Russia Set for Year's First Baikonur Space Launch Feb. 5

First Ariane 5 For 2013 Ready For Loading

TECH SPACE
The Origin And Maintenance Of A Retrograde Exoplanet

New Evidence Indicates Auroras Occur Outside Our Solar System

Glitch has space telescope shut down

Earth-size planets common in galaxy

TECH SPACE
Bioinspired fibers change color when stretched

Stanford Researchers Break Million-core Supercomputer Barrier

Scientists trick iron-eating bacteria into breathing electrons instead

Demagnetization by rapid spin transport




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement