Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
Scientists observe how superconducting nanowires lose resistance-free state
by Staff Writers
Durham NC (SPX) Sep 26, 2011


File image.

Even with today's invisibility cloaks, people can't walk through walls. But, when paired together, millions of electrons can.

The electrons perform this trick, called macroscopic quantum tunneling, when they pair up and move into a region of space that is normally off-limits under the laws of classical mechanics. The problem is that as millions of electrons collectively move through a superconducting nanowire, they use energy and give off heat.

The heat can build, transforming sections of the wire into a non-superconducting state. The process, called a phase slip, adds resistance to an electrical system and has implications for designing new nano-scale superconductors.

Now, scientists have observed individual phase slips in aluminum nanowires and characterized the nature and temperature at which they occur. This information could help scientists remove phase slips from nano-scale systems, which could lead to more reliable nanowires and more efficient nano-electronics, said Duke physicist Albert Chang.

The results appear online in Physical Review Letters.

The macroscopic quantum tunneling effect was first observed in a system called a Josephson junction. This device has a thin insulating layer connecting two superconductors, which are several nanometers wide and have a three-dimensional shape.

To study the tunneling and phase slips in a simpler system, however, Chang and his colleagues used individual, one-dimensional nanowires made of aluminum. The new observations are "arguably the first convincing demonstration of tunneling of millions of electrons in one-dimensional superconducting nanowires," said Chang, who led the study.

In the experiment, the wires ranged in length from 1.5 to 10 micrometers, with widths from five to 10 nanometers. Chang cooled the wires to a temperature close to absolute zero, roughly 1 degree Kelvin or -458 degrees Fahrenheit.

At this temperature, a metal's crystal lattice vibrates in a way that allows electrons to overcome their negative repulsion of one other. The electrons make pairs and electric current flows essentially resistance-free, forming a superconductor.

The electron pairs move together in a path in a quantum-mechanical space, which resembles the curled cord of an old phone. On their way around the path, all of the electrons have to scale a barrier or a wall. Moving past this wall collectively keeps the electrons paired and the superconducting current stable.

But, the collective effort takes energy and gives off heat. With successive scaling attempts, the heat builds, causing a section of the wire to experience a phase slip from a superconducting to a non-superconducting state.

To pinpoint precisely how phase slips happen, Chang varied the temperatures and amount of current run through the aluminum nanowires.

The experiments show that at higher temperatures, roughly 1.5 degrees Kelvin and close to the critical temperature where the wires naturally become non-superconducting, the electrons have enough energy to move over the wall that keeps the electrons paired and the superconducting current stable.

In contrast, the electrons in the nanowires cooled to less than 1 degree Kelvin do not have the energy to scale the wall. Instead, the electrons tunnel, or go through the wall together, all at once, said Duke physicist Gleb Finkelstein, one of Chang's collaborators.

The experiments also show that at the relatively higher temperatures, individual jumps over the wall don't create enough heat to cause a breakdown in superconductivity. But multiple jumps do.

At the lowest temperatures, however, the paired electrons only need to experience one successful attempt at the wall, either over or through it, to create enough heat to slip in phase and break the superconducting state.

Studying the electrons' behavior at specific temperatures provides scientists with information to build ultra-thin superconducting wires that might not have phase slips. Chang said the improved wires could soon play a role in ultra-miniaturized electrical components for ultra-miniaturized electronics, such as the quantum bit, used in a quantum computer.

Citation: Li, P. et al. Phys. Rev. Lett. 107, 137004 (2011) DOI:10.1103/PhysRevLett.107.137004

.


Related Links
Duke University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Controlling silicon evaporation allows scientists to boost graphene quality
Atlanta GA (SPX) Sep 26, 2011
Scientists from the Georgia Institute of Technology have for the first time provided details of their "confinement controlled sublimation" technique for growing high-quality layers of epitaxial graphene on silicon carbide wafers. The technique relies on controlling the vapor pressure of gas-phase silicon in the high-temperature furnace used for fabricating the material. The basic principle ... read more


NANO TECH
China to launch moon-landing probe around 2013

United Launch Alliance Launches GRAIL Spacecrafts To Moon

NASA launches twin spacecraft to study Moon's core

Second bid to launch NASA's Moon-bound spacecraft

NANO TECH
Russia to resume deep space explorations with Phobos expedition

Opportunity Continues to Study Chester Lake Rock Outcrop

Young Clays on Mars Could Have Been Habitable Regions

Opportunity on verge of new discovery

NANO TECH
Students Participate in Plant Investigation With Space Station Crew

NASA Completes Orion Spacecraft Parachute Testing In Arizona

NASA Posts Global Exploration Roadmap

NASA to fund 'space taxis'

NANO TECH
Chang'e-2 sends data back from L2

Mythbusting for Tiangong

Tiangong-1 launch will pave way for China's first space station

China to launch unmanned space module by Sept 30

NANO TECH
Private US capsule not to dock with ISS

Crew safely returns to Earth after crash

Russia postpones next manned launch to ISS

Russia announces launch of 2 spacecraft in Oct-Nov

NANO TECH
Sea Launch resumes operations after 2-year break

Ariane 5 marks fifth launch for 2011

Countdown to first Soyuz launch at Kourou under way

Ariane rocket launches satellites after strike delay

NANO TECH
From the Comfort of Home, Web Users May Have Found New Planets

Rocky Planets Could Have Been Born as Gas Giants

How Common Are Earth-Moon Planetary Systems

From Star Wars to Science Fact: Tatooine-Like Planet Discovered

NANO TECH
Lehigh University ceramics researchers shed light on metal embrittlement

ECIT researchers use liquid crystals to replace space motors

Samsung says 10 million Galaxy S II handsets sold

Apple argues iPad case in Australia tablet row




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement