Subscribe free to our newsletters via your
. 24/7 Space News .




EARLY EARTH
Scientists create possible precursor to life
by Staff Writers
Odense M, Denmark (SPX) Oct 22, 2014


Creating an artificial protocell is far from simple, and so far no one has managed to do it.

How did life originate? And can scientists create life? These questions not only occupy the minds of scientists interested in the origin of life, but also researchers working with technology of the future. If we can create artificial living systems, we may not only understand the origin of life - we can also revolutionize the future of technology.

Protocells are the simplest, most primitive living systems, you can think of. The oldest ancestor of life on Earth was a protocell, and when we see, what it eventually managed to evolve into, we understand why science is so fascinated with protocells. If science can create an artificial protocell, we get a very basic ingredient for creating more advanced artificial life.

However, creating an artificial protocell is far from simple, and so far no one has managed to do that. One of the challenges is to create the information strings that can be inherited by cell offspring, including protocells. Such information strings are like modern DNA or RNA strings, and they are needed to control cell metabolism and provide the cell with instructions about how to divide.

Essential for life
If one daughter cell after a division has a slightly altered information (maybe it provides a slightly faster metabolism), they may be more fit to survive. Therefor it may be selected and an evolution has started.

Now researchers from the Center for Fundamental Living Technology (FLINT), Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, describe in the journal Europhysics Letters, how they, in a virtual computer experiment, have discovered information strings with peculiar properties.

Professor and head of FLINT, Steen Rasmussen, says: "Finding mechanisms to create information strings are essential for researchers working with artificial life."

Steen Rasmussen and his colleagues know they face two problems: Firstly long molecular strings are decomposed in water. This means that long information strings "break" quickly in water and turn into many short strings. Thus it is very difficult to maintain a population of long strings over time.

Secondly, it is difficult to make these molecules replicate without the use of modern enzymes, whereas it is easier to make a so-called ligation. A ligation is to connect any combination of two shorter strings into a longer string, assisted by another matching longer string. Ligation is the mechanism used by the SDU-researchers.

"In our computer simulation - our virtual molecular laboratory - information strings began to replicate quickly and efficiently as expected. However, we were struck to see that the system quickly developed an equal number of short and long information strings and further that a strong pattern selection on the strings had occurred. We could see that only very specific information patterns on the strings were to be seen in the surviving strings.

"We were puzzled: How could such a coordinated selection of strings occur, when we knew that we had not programmed it. The explanation had to be found in the way the strings interacted with each other", explains Steen Rasmussen.

It is like society
According to Steen Rasmussen, a so-called self-organizing autocatalytic network was created in the virtual pot, into which he and his colleagues poured the ingredients for information strings.

An autocatalytic network is a network of molecules, which catalyze each other's production. Each molecule can be formed by at least one chemical reaction in the network, and each reaction can be catalyzed by at least one other molecule in the network. This process will create a network that exhibits a primitive form of metabolism and an information system that replicates itself from generation to generation.

"An autocatalytic network works like a community; each molecule is a citizen who interacts with other citizens and together they help create a society", explains Steen Rasmussen.

This autocatalytic set quickly evolved into a state where strings of all lengths existed in equal concentrations, which is not what is usually found. Further, the selected strings had strikingly similar patterns, which is also unusual.

"We might have discovered a process similar to the processes that initially sparked the first life. We of course don't know if life actually was created this way - but it could have been one of the steps. Perhaps a similar process created sufficiently high concentrations of longer information strings when the first protocell was created", explains Steen Rasmussen.

Basis for new technology
The mechanisms underlying the formation and selection of effective information strings are not only interesting for the researchers who are working to create protocells. They also have value to researchers working with tomorrow's technology, like they do at the FLINT Center.

"We seek ways to develop technology that's based on living and life-like processes. If we succeed, we will have a world where technological devices can repair themselves, develop new properties and be re-used. For example a computer made of biological materials poses very different - and less environmentally stressful - requirements for production and disposal", says Steen Rasmussen.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Southern Denmark
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARLY EARTH
New 'tree of life' traces evolution of a mysterious cotinga birds
Ithaca NY (SPX) Oct 17, 2014
They are some of the brightest, loudest, oddest-looking, least-understood birds on the planet. Some have bulbous crests, long fleshy wattles, or Elvis-worthy pompadours in addition to electric blue, deep purple, or screaming orange feathers. But thanks to a comprehensive new evolutionary "tree of life" generated for the tropical cotinga family of South America, the door is now open to new discov ... read more


EARLY EARTH
China's ailing moon rover weakening

NASA Mission Finds Widespread Evidence of Young Lunar Volcanism

Russian Luna-25 Mission to Cost Billions

New Batch of Lunar Soil to be Delivered to Earth in 2023-2025

EARLY EARTH
Mars Reconnaissance Orbiter Studies Comet Flyby

Mars rover had good opportunities to image passing comet

Mars One -- and done?

MAVEN spacecraft's first look at Mars holds surprises

EARLY EARTH
Dava Newman nominated for NASA post

"Houston: We Have A Problem...But No Worries, Our Virtual Therapist Is On It"

Space Trips To Change World For Better: Virgin Galactic CEO

NASA Exercises Authority to Proceed with Commercial Crew Contracts

EARLY EARTH
Work completed on satellite launch center in Hainan

China to launch new marine surveillance satellites in 2019

China Successfully Orbits Experimental Satellite

China's first space lab in operation for over 1000 days

EARLY EARTH
CASIS Issues RFP For EO Ideas Using ISS Technology

Cosmonauts Busy as US Segment Crew Takes Day Off

ISS Astronauts Wrap Up Preps for Wednesday Spacewalk

Progress-M Cargo Ship To Undock From ISS On Oct 27

EARLY EARTH
China Completes Country's Largest Spaceport

Argentina launches geostationary satellite

Arianespace's December mission for DIRECTV-14 and GSAT-16 satellites in process

Inquiry reveals design stage shortcoming in Galileo navigation system

EARLY EARTH
Getting To Know Super-Earths

Astronomers Spot Faraway Uranus-Like Planet

NASA's Hubble Maps the Temperature and Water Vapor on an Extreme Exoplanet

Hubble project maps temperature, water vapor on wild exoplanet

EARLY EARTH
Goldilocks principle wrong for particle assembly

LockMart Team Delivers Lightning Mapper Instrument For Weather Satellite

A simple and versatile way to build 3-dimensional materials of the future

SSL Begins Post-Launch Maneuvers For Intelsat 30




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.