Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Scientists create cheaper magnetic material for cars, wind turbines
by Staff Writers
Ames IA (SPX) May 03, 2015


Cerium is a widely available and inexpensive rare-earth metal. US Department of Energy Ames Laboratory scientists have used it to create a high-performance magnet that's similar in performance to traditional dysprosium-containing magnets and could make wind turbines less expensive to manufacture. Image courtesy U.S. Dept. of Energy's Ames Laboratory. For a larger version of this image please go here.

Karl A. Gschneidner and fellow scientists at the U.S. Department of Energy's Ames Laboratory have created a new magnetic alloy that is an alternative to traditional rare-earth permanent magnets.

The new alloy - a potential replacement for high-performance permanent magnets found in automobile engines and wind turbines - eliminates the use of one of the scarcest and costliest rare earth elements, dysprosium, and instead uses cerium, the most abundant rare earth.

The result, an alloy of neodymium, iron and boron co-doped with cerium and cobalt, is a less expensive material with properties that are competitive with traditional sintered magnets containing dysprosium.

Experiments performed at Ames Laboratory by post-doctoral researcher Arjun Pathak, and Mahmud Khan (now at Miami University) demonstrated that the cerium-containing alloy's intrinsic coercivity - the ability of a magnetic material to resist demagnetization - far exceeds that of dysprosium-containing magnets at high temperatures. The materials are at least 20 to 40 percent cheaper than the dysprosium-containing magnets.

"This is quite exciting result; we found that this material works better than anything out there at temperatures above 150 C," said Gschneidner. "It's an important consideration for high-temperature applications."

Previous attempts to use cerium in rare-earth magnets failed because it reduces the Curie temperature - the temperature above which an alloy loses its permanent magnet properties. But the research team discovered that co-doping with cobalt allowed them to substitute cerium for dysprosium without losing desired magnetic properties.

Finding a comparable substitute material is key to reducing manufacturing reliance on dysprosium; the current demand for it far outpaces mining and recycling sources for it.

The paper, "Cerium: An Unlikely Replacement of Dysprosium in High Performance Nd-Fe-B Permanent Magnets" was published in Advanced Materials, and co-authored by Arjun K. Pathak, Mahmud Khan, Karl. A. Gschneidner, Ralph W. McCallum, Lin Zhou, Kewei Sun, Kevin W. Dennis, Matthew J. Kramer and Vitalij Pecharsky of the Ames Laboratory; Chen Zhou of MEDA Engineering and Technical Services LLC; and Frederik E. Pinkerton of General Motors R and D Center.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Ames Laboratory
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
New model for the thermo-elasto-plasticity deformation of crystals
Beijing, China (SPX) May 01, 2015
Researchers have proposed a new thermo-elasto-plasticity constitutive model based on the interatomic potential and solid mechanics for metal crystals. Through this new model, the material behavior at different temperatures could be described accurately and conveniently. The work, led by Professor Wang TzuChiang, together with collaborators Chen cen and Tang Qiheng at the State Key Laborato ... read more


TECH SPACE
NASA's LRO Moves Closer to the Lunar Surface

European Space Agency Director Wants to Set Up a Moon Base

Russia Invites China to Join in Creating Lunar Station

Japan to land first unmanned spacecraft on moon in 2018

TECH SPACE
UAE says on track to send probe to Mars in 2021

Student Mars Rover team will compete in Utah desert

4,000+ Martian Days of Work on Mars!

NASA Announces Journey to Mars Challenge

TECH SPACE
Aitech Provides Subsystem and Computing Boards for Commercial Crew

The language of invention: Most innovations are rephrasings of the past

NASA Confirms Electromagnetic Drive Produces Thrust in Vacuum

NASA pushes back against proposal to slash climate budget

TECH SPACE
3D printer making Chinese space suit parts

Xinhua Insight: How China joins space club?

Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

TECH SPACE
Manned mission to ISS to be delayed due to cargo spacecraft's failure

Progress Incident Not Threatening Orbital Station, Work of Crew

Russia loses control of unmanned spacecraft

Japanese astronaut to arrive in ISS in May

TECH SPACE
Successful SpaceX escape test 'bodes well for future'

'Team Patrick-Cape' supports Pad Abort Test

Local launch expertise; world-wide attention

ILS And Dauria announce Proton/Angara dual launch services agreement

TECH SPACE
Astrophysicists offer proof that famous image shows forming planets

Astronomers detect drastic atmospheric change in super Earth

New exoplanet too big for its star

Robotically discovering Earth's nearest neighbors

TECH SPACE
Scientists create cheaper magnetic material for cars, wind turbines

Space debris from satellite explosion increases collision risk for space craft

Damaging Radiation Effects on Travelers to Mars

Invisibility cloaks move into the real-life classroom




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.