Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Scientists capture first direct proof of Hofstadter butterfly effect
by Staff Writers
Orlando FL (SPX) May 20, 2013


UCF team Masa Ishigami and Jyoti Katoch work to capture the illusive Hofstadter's butterfly effect. Credit: UCF.

A team of researchers from several universities - including UCF -has observed a rare quantum physics effect that produces a repeating butterfly-shaped energy spectrum in a magnetic field, confirming the longstanding prediction of the quantum fractal energy structure called Hofstadter's butterfly.

This discovery by the team paves the way for engineering new types of extraordinary nanoscale materials that can be used to develop smaller, lighter and faster electronics, including sensors, cell phones, tablets and laptops.

First predicted by American physicist Douglas Hofstadter in 1976, the butterfly pattern emerges when electrons are confined to a two-dimensional plane and subjected to both a periodic potential energy and a strong magnetic field.

The Hofstadter butterfly is a fractal pattern-meaning that it contains shapes that repeat on smaller and smaller size scales. Fractals are common in systems such as fluid mechanics, but rare in the quantum mechanical world. The Hofstadter butterfly is one of the first quantum fractals theoretically discovered in physics but, until now, there has been no direct experimental proof of this spectrum.

Columbia University led the study and also involved scientists from the City University of New York, Tohoku University and the National Institute for Materials Science in Japan. Columbia prepared the sample and the UCF team measured the regular recurrence of the high-fidelity periodic pattern, engineered by inducing nanoscale ripples on graphene, a carbon material.

The measured recurrence served as the essential proof that the measured spectrum was indeed the Hofstadter butterfly. The image that captured the evidence was taken in UCF Assistant Professor Masa Ishigami's laboratory.

Jyoti Katoch, Ishigami's graduate student, used a non-contact atomic force high-resolution microscope to image the ripples, which have the height of only 0.2 angstroms (twenty trillionth of a meter), to confirm that the observed Hofstadter butterfly spectrum indeed matched the theoretical prediction.

"The arrangement of individual atoms, even just one atom can drastically alter properties of nanoscale materials. That is the basis for nanotechnology," Ishigami said.

"Atomic structures must be resolved to understand the properties of nanoscale materials. What we do here at UCF is to explain why nanoscale materials behave so different by resolving their atomic structures.

"Only when we understand the origin of the extraordinary properties of nanoscale materials, we can propel nanoscience and technology forward. What Jyoti has done here is to image how graphene is rippled to explain the observed Hofstadter spectrum."

UCF's laboratory utilizes a novel, the state-of-the-art microscopy technique to simultaneously determine the atomic structure and electronic properties of nanoscale materials such as graphene.

Katoch has been working with Ishigami since 2008, when Ishigami joined UCF. Katoch helped build the laboratory and developed the atomic-resolution capability critical to capturing the picture proof for this study.

Ishigami has a Ph.D. in physics from the University of California at Berkeley and a bachelor's degree in physics from the Massachusetts Institute of Technology. He has won multiple awards, including the Intelligence Community postdoctoral fellowship and the Hertz graduate fellowship, and has published more than 30 papers in journals including Science.

The study is published in Nature.

.


Related Links
University of Central Florida
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
New principle may help explain why nature is quantum
Singapore (SPX) May 15, 2013
Like small children, scientists are always asking the question 'why?'. One question they've yet to answer is why nature picked quantum physics, in all its weird glory, as a sensible way to behave. Researchers Corsin Pfister and Stephanie Wehner at the Centre for Quantum Technologies at the National University of Singapore tackle this perennial question in a paper published 14 May in Nature Commu ... read more


TIME AND SPACE
Bright Explosion on the Moon

NASA says meteor impact on the moon glowed like a star

Where on Earth did the moon's water come from

Water on moon, Earth have a common source

TIME AND SPACE
Mars Icebreaker Life Mission

Nine-Year-Old Mars Rover Passes 40-Year-Old Record

NASA Probe Counts Space Rock Impacts on Mars

Living and Dying on Mars

TIME AND SPACE
British astronaut 'Major Tim' to fly to ISS

Danish Space Venture ready for lift off

Researchers use graphene quantum dots to detect humidity and pressure

Outside View: Patents laws and suffering innovators

TIME AND SPACE
China launches communications satellite

On Course for Shenzhou 10

Yuanwang III, VI depart for space-tracking missions

Shenzhou's Shadow Crew

TIME AND SPACE
Mice, gerbils perish in Russia space flight

Star Canadian spaceman back on Earth, relishing fresh air

ISS Statistics Tell the Story of Science in Orbit

Spaceman says goodbye to ISS with David Bowie classic

TIME AND SPACE
O3b Networks' initial satellite is fueled for Arianespace's upcoming Soyuz launch from the Spaceport

Ariane Flight VA214's launch vehicle marks a preparation milestone

ILS Proton Successfully Launches EUTELSAT 3D for Eutelsat

Russia's Proton-M Spacecraft Set to Orbit French Satellite

TIME AND SPACE
Critical Kepler Reaction Wheel Fails: Mission End In Sight

Sifting Through the Atmosphere's of Far-Off Worlds

New Method of Finding Planets Scores its First Discovery

Team Takes Part in Discovering New Planet

TIME AND SPACE
NASA Seeks High-Performance Spaceflight Computing Capabilities

SPUTNIX is granted a license for space activity

Stanford Engineers' New Metamaterial Doubles Up on Invisibility

Observation of second sound in a quantum gas




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement