Subscribe free to our newsletters via your
. 24/7 Space News .




CARBON WORLDS
Scientists X-ray tiny cell organelles responsible for carbon fixation
by Staff Writers
Uppsala, Sweden (SPX) Nov 18, 2014


Imaging biological particles using an X-ray laser.

An international team of scientists led by Uppsala University has developed a high-throughput method of imaging biological particles using an X-ray laser. The images show projections of the carboxysome particle, a delicate and tiny cell compartment in photosynthetic bacteria.

The experiment, described in a paper published in the scientific journal Nature Photonics, represents a major milestone for studies of individual biological structures using X-ray lasers. The technique paves the way for 3D imaging of parts of the cell, and even small viruses, to develop a deeper understanding of life's smallest units.

To test the method, scientists from Uppsala University, the European XFEL, DESY and a number of other institutions used the carboxysome. The carboxysome is a cell organelle for CO2 assimilation in cyanobacteria that has been extensively studied in Uppsala by Dirk Hasse and Inger Andersson. Carboxysomes contain protein machinery that incorporates carbon from carbon dioxide into biomolecules. About a third of global carbon fixation happens in carboxysomes.

The carboxysome is a tiny structure -- only about 115 nanometres across, too small to clearly see with an optical microscope. A nanometre is a millionth of a millimetre.

Using a specially designed injector that produces a particle stream thinner than a human hair, the scientists sprayed an aerosol of carboxysomes across the beam of the LCLS X-ray laser at the SLAC National Accelerator Laboratory in the US. The scientists calculated the structure of the organelles by analysing the way the carboxysomes scatter the extremely short and ultra bright X-ray flashes of the LCLS. Up until now, this method required crystals of the sample material to get sufficient signal. Thanks to the extreme brightness of the X-ray laser and clever analysis of the diffraction patterns, the researchers could reconstruct individual samples without having to crystallise them. Carboxysomes like many other biological samples vary in shape and size and therefore cannot be crystallised.

Within 12 minutes, the researchers collected 70,000 scattering patterns from individual particles. The analysis returned an icosahedral shape (a structure with 20 triangle-shaped sides) for carboxysomes, in line with expectations. The results also showed considerable variation in size.

"Our method allows single-particle imaging of objects which can be different in size and shape", says Max Hantke, a doctoral student in molecular biophysics at Uppsala University in Sweden who led the research.

While electron microscopy usually requires samples to be frozen, X-ray lasers like the LCLS or the European XFEL, which is currently being built in Germany, can analyse biological samples without freezing. This method also offers the possibility to image whole living cells at unprecedented resolution.

"With the carboxysomes we have reconstructed the smallest single biological particles ever imaged with an X-ray laser, and we were also able to improve resolution. The reconstruction shows details as small as about 18 nanometres. For the first time we access a very interesting size regime with an X-ray laser. Large pathogenic viruses like HIV, influenza-, and herpes virus are in the same size domain as the carboxysome", says Max Hantke.

"These advances lay the foundations for accurate, high-throughput structure determination by flash-diffractive imaging and offer a means to study structure and structural heterogeneity in biology and elsewhere", says Professor Janos Hajdu, who is also one of the lead authors on the paper and one of Hantke's mentors as well as an advisor to European XFEL.

"Additionally, the size distribution of the carboxysomes before the experiment and what was seen in the resulting data matched almost perfectly", says Max Hantke, suggesting the organelles that were imaged were structurally intact.

While the intense X-ray pulse destroys the sample, an accurate diffraction pattern can be acquired before it disintegrates. This method, called "diffraction-before-destruction", was proposed in 2000 by the Uppsala group and was demonstrated with non-biological samples at DESY's FLASH facility in 2006.

Such single-particle imaging will be possible at the European XFEL when the facility opens to users in 2017. Two dedicated instruments will be available for such studies, the SPB instrument (Single Particles and Biomolecules) and the SFX instrument (Serial Femtosecond Crystallography), which will incorporate a similar sample injector to the one used in this experiment. With its 27,000 X-ray flashes per second and even higher intensity, the European XFEL will open up more opportunities and possibilities for researchers.

"In biology, there is heterogeneity at all levels, and we wanted a method for seeing it below the cellular level", says Janos Hajdu.

"We hope this research could lead to three-dimensional models showing the diversity of nanoscale cell parts", Max Hantke adds.

"These results show the way to high-throughput imaging of biological samples at high resolution. High data rates and very short exposures allow studies on the dynamics of particles and permit the analysis of structural variations, which are crucially important for life", says Filipe Maia, supervisor of Max Hantke.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Uppsala University
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CARBON WORLDS
The Ocean's Living Carbon Pumps
Rehovot, Israel (SPX) Oct 23, 2014
When we talk about global carbon fixation -"pumping" carbon out of the atmosphere and fixing it into organic molecules by photosynthesis - proper measurement is key to understanding this process. By some estimates, almost half of the world's organic carbon is fixed by marine organisms called phytoplankton - single-celled photosynthetic organisms that account for less than one percent of the tota ... read more


CARBON WORLDS
After Mars, India space chief aims for the moon

China examines the three stages of lunar test run

China gears up for lunar mission after round-trip success

NASA's LRO Spacecraft Captures Images of LADEE's Impact Crater

CARBON WORLDS
Comet lander 'working well', but may be on slope

China Exclusive: China developing Mars rover

UI instrument sees comet-created atmosphere on Mars

Mars Orbiter MAVEN Demonstrates Relay Prowess

CARBON WORLDS
Weather delays Orion's move to launch pad, rescheduled for Tuesday

Google takes over NASA airport in Silicon Valley

Orion Hoisted Atop Delta 4 Launcher

Application of NASA Earth Science for Planning in African Union Nations

CARBON WORLDS
China publishes Earth, Moon photos taken by lunar orbiter

China plans to launch about 120 applied satellites

Mars probe to debut at upcoming air show

China to build global quantum communication network in 2030

CARBON WORLDS
Astronaut turned Twitter star, Reid Wiseman, back on Earth

Three-man multinational space crew returns to Earth

International Space Station astronauts put GoPro camera in a floating ball of water

ISS Agency Heads Issue Joint Statement

CARBON WORLDS
Soyuz Installed at Baikonur, Expected to Launch Wednesday

SpaceX chief Musk confirms Internet satellite plan

Orbital recommits to NASA Commercial program and Antares

Japanese Satellites Orbited as Part of Russia-Ukraine Program

CARBON WORLDS
Follow the Dust to Find Planets

NASA's TESS mission cleared for next development phase

ADS primes ESA's CHEOPS to detect and classify exoplanets

NASA's TESS Mission Cleared for Next Development Phase

CARBON WORLDS
New form of crystalline order good for thermoelectric uses

Supercomputing progress slows

Paris pop-up store immortalises shoppers with 3D printed figurine

How Satellite Laser Ranging Got its Start 50 Years Ago




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.