Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. 24/7 Space News .




SATURN DAILY
Saturn's giant storm reveals the planet's churning atmosphere
by Staff Writers
Paris (ESA) Oct 26, 2012


A new study, based on data from the NASA/ESA/ASI Cassini-Huygens mission and ground-based telescopes, has looked into one of the largest storms recorded in the Solar System, which started whirling over Saturn's mid-northern latitudes about two years ago. The storm originated in the planet's lower atmosphere, where it was first seen in December 2010, and later grew to encircle the entire planet.

A recent study of the giant storm whirling on Saturn for the past two years, which became known as the "Great Springtime Storm", has given planetary scientists new clues about the planet's weather.

Using a combination of data from the Cassini orbiter and ground-based telescopes, the scientists traced the storm's development from deep within the churning clouds in Saturn's lower atmosphere to altitudes hundreds of kilometres above the cloud decks, in the planet's stratosphere.

There, two large pockets of warm air formed and later merged into one gigantic hot vortex that has been travelling around Saturn's northern hemisphere since mid-2011. The study of this storm and its associated vortex, which occurred unusually early in Saturn's 30-year-long weather cycle, suggests that waves play an important role in the energy transfer across the planet's atmosphere.

Storms are large disturbances in a planetary atmosphere. A common phenomenon on Earth, storms are not unique to our planet's weather and may arise on any planet that is surrounded by a thick atmosphere. Astronomical records report similar events on several planets in the Solar System, and recent data hint at possible storms on exoplanets.

A new study, based on data from the NASA/ESA/ASI Cassini-Huygens mission and ground-based telescopes, has looked into one of the largest storms recorded in the Solar System, which started whirling over Saturn's mid-northern latitudes about two years ago. The storm originated in the planet's lower atmosphere, where it was first seen in December 2010, and later grew to encircle the entire planet.

The disturbance also propagated to higher atmospheric layers, where its aftermath can still be detected. It is known as the 'Great Springtime Storm' because it took place during the spring season in the planet's northern hemisphere, which started in August 2009 and lasts about seven years.

"Giant storms on Saturn occur regularly and have been observed for over a century, but this is the first time we could follow the temporal evolution of such an event in great detail," notes Leigh Fletcher from the University of Oxford, UK. Fletcher has led an extensive study of the Great Springtime Storm using data gathered in the infrared portion of the electromagnetic spectrum by the Cassini spacecraft, which has been orbiting Saturn since 2004, as well as ESO's Very Large Telescope and NASA's Infrared Telescope Facility.

"The storm was first detected in the planet's lower atmosphere - the troposphere - via optical and radio observations. Then we looked for its signature at mid-infrared wavelengths," explains Fletcher.

"When we look at Saturn's atmosphere in optical wavelengths, we see the sunlight that is reflected by a haze layer located deep down in the troposphere. In the mid-infrared, instead, we directly measure the temperature of the atmosphere for many kilometres above the clouds. This allows us to peer through the three-dimensional structure of the atmosphere," he adds.

Observing at these longer wavelengths provided a drastically different view, and allowed Fletcher and his collaborators to probe how the storm had infiltrated the upper part of the atmosphere - the stratosphere upwards from the troposphere. The presence of Cassini in the saturnian system and its ability to perform mid-infrared observations has allowed the astronomers to monitor the evolution of this unique meteorological event in unprecedented detail.

Mid-infrared images from January 2011 showed that two large pockets of warm air had formed over the storm, in the stratosphere. These warm air masses, also referred to as 'beacons', were both moving westwards, although with different speeds, and remained clearly separated for a few months. Between April and June 2011, the two beacons merged and gave rise to a giant vortex of clockwise-swirling air - an anti-cyclone - with temperatures up to 221 K, hotter than the surrounding air by 70-80 K.

The huge anti-cyclone in Saturn's stratosphere had fully detached from the tropospheric disturbance that caused it in the first place. At its biggest, in late June 2011, the vortex covered about 62 000 km - almost one quarter of the planet's circumference at the mid-northern latitudes affected by the storm. At the same time, the storm in the troposphere, only visible at optical wavelengths, had almost ceased.

"We kept monitoring Saturn during the storm with the help of many small, ground-based telescopes operated by professional and amateur astronomers alike, and found no sign of the giant vortex in the optical data. Although the tropospheric storm was the underlying cause of this enormous vortex, the vortex subsequently evolved independently of events happening deeper down, and was still present long after the tropospheric storm was over," he adds.

Since July 2011, the giant hot vortex has been shrinking and cooling at a very slow pace. It is still present in Saturn's stratosphere, where it has shrunk to less than half of its greatest extent, and is expected to disappear completely in a couple of years.

The data analysed by Fletcher and his collaborators showed how the temperature, wind velocity and chemical composition varied within and around the giant vortex. This allowed them to unveil how the storm had evolved over several months, and to investigate the energy transfer mechanisms at play among the various layers of Saturn's atmosphere.

"We suspected that the weather in the lower atmosphere has an impact on what happens at much higher layers, hundreds of kilometres upwards, just as happens in Earth's atmosphere. Now we have evidence for this on Saturn," says Fletcher.

In Earth's atmosphere, storm-generated waves are known to transport air and energy across the atmosphere, including upwards to the stratosphere. It is possible that a similar mechanism has taken place on Saturn, too: wave-like perturbations, induced by the tropospheric storm, might have made their way upwards to the stratosphere, where they released their energy and caused the formation of the two beacons.

"What is unusual in this particular case is that the two beacons interacted with one another up in the stratosphere, giving rise to the giant vortex. How exactly this happened remains an open question that needs to be tackled via numerical simulations," comments Fletcher.

The timing of the storm is also quite puzzling. Since 1876, large disturbances have been observed on Saturn with striking regularity: once every 'saturnian' year, which lasts about 30 years, and always during the northern hemisphere's summer season. The last such storm on record dates back to 1990, and the next one was expected in 2020.

"The Great Springtime Storm is definitely ahead of schedule with respect to Saturn's standard storm cycle. It is still unclear whether this is an isolated event or a signal that the storm season on the planet started earlier than expected," comments Nicolas Altobelli, Cassini-Huygens Project Scientist at ESA.

"Cassini will keep monitoring Saturn's atmosphere from its vantage point. The mission will be operating until the northern summer solstice, which will take place in May 2017. The storm season on Saturn's northern hemisphere may not be over yet, and in this case we might be able to see other spectacular events in the next few years," Altobelli adds.

"If storms are detected on Saturn in the upcoming future, it will be important to verify whether these will also produce dramatic aftereffects such as the stratospheric vortex from 2011," Fletcher concludes.

The study presented here is based on data gathered with the Composite Infrared Spectrometer (CIRS) on board the Cassini orbiter from the NASA/ESA/ASI Cassini-Huygens mission. The data were complemented by ground-based observations from the VLT Imager and Spectrometer for the mid-Infrared (VISIR) on ESO's Very Large Telescope, located in Chile, and from the Mid-Infrared Spectrometer and Imager (MIRSI) on NASA's Infrared Telescope Facility, located at Mauna Kea, Hawaii, USA. Related publication: L. N. Fletcher, et al., "The origin and evolution of Saturn's 2011-2012 stratospheric vortex", 2012, Icarus, Volume 221, Issue 2, November-December 2012, Pages 560-586, DOI:10.1016/j.icarus.2012.08.024

.


Related Links
Cassini at ESA
Cassini at JPL
Cassini images
Explore The Ring World of Saturn and her moons
Jupiter and its Moons
The million outer planets of a star called Sol
News Flash at Mercury






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





SATURN DAILY
Giant impact scenario may explain the unusual moons of Saturn
Santa Cruz CA (SPX) Oct 18, 2012
Among the oddities of the outer solar system are the middle-sized moons of Saturn, a half-dozen icy bodies dwarfed by Saturn's massive moon Titan. According to a new model for the origin of the Saturn system, these middle-sized moons were spawned during giant impacts in which several major satellites merged to form Titan. Erik Asphaug, professor of Earth and planetary sciences at the Unive ... read more


SATURN DAILY
NASA's LADEE Spacecraft Gets Final Science Instrument Installed

Astrium presents results of its study into automatic landing near the Moon's south pole

European mission to search for moon water

Model reconciles Lunar Earth composition with giant impact theory

SATURN DAILY
Opportunity Undertakes Survey Drives Of Local Area

Assessing Drop-Off to Mars Rover's Observation Tray

Valles Marineris - the largest canyon in the Solar System

Curiosity Rover Collects Fourth Scoop of Martian Soil

SATURN DAILY
Space daredevil Baumgartner is 'officially retired'

NASA must reinvest in nanotechnology research, according to new Rice University paper

Austrian space diver no stranger to danger

Baumgartner feat boosts hopes for imperilled astronauts

SATURN DAILY
China to launch 11 meteorological satellites by 2020

China makes progress in spaceflight research

Patience for Tiangong

China launches civilian technology satellites

SATURN DAILY
New crew docks with ISS: Russia

ISS Crew Gets Ready for New Expedition 33 Trio

New ISS Crew Confirmed

Russia launches three astronauts to ISS

SATURN DAILY
Pleiades 1B joins its launcher at the Spaceport for Arianespace's Soyuz mission in November

S. Korea readies third bid to join global space club

Brazil eyes closer space cooperation with Ukraine

S. Korea plans third rocket launch bid Friday

SATURN DAILY
New Study Brings a Doubted Exoplanet 'Back from the Dead'

New small satellite will study super-Earths for ESA

Most Planetary Systems are 'Flatter than Pancakes'

Glitch could end NASA planet search

SATURN DAILY
A new take on the Midas touch - changing the colour of gold

Northrop Grumman Matures Laser Threat Terminator Technology to Address Emerging Threats

US DoE's Ames Laboratory improving process to recycle rare-earth materials

Droplet response to electric voltage in solids exposed




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement