Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. 24/7 Space News .




EXO LIFE
Salt needed: Tolerance lessons from a dead sea fungus
by Staff Writers
Walnut Creek, CA (SPX) May 13, 2014


File image: Dead Sea.

Despite its name, the Dead Sea does support life, and not just in the sense of helping visitors float in its waters. Algae, bacteria, and fungi make up the limited number of species that can tolerate the extremely salty environment at the lowest point on Earth.

Some organisms thrive in salty environments by lying dormant when salt concentrations are very high. Other organisms need salt to grow. To learn which survival strategy the filamentous fungus Eurotium rubrum uses, a team of researchers led by Eviatar Nevo from the University of Haifa in Israel, Igor Grigoriev of the U.S. Department of Energy Joint Genome Institute (DOE JGI), and Gerhard Rambold, University of Bayreuth, Germany and their colleagues studied its genome. They described their findings in Nature Communications.

"Understanding the long-term adaptation of cells and organisms to high salinity is of great importance in a world with increasing desertification and salinity," the team wrote.

"The observed functional and structural adaptations provide new insight into the mechanisms that help organisms to survive under such extreme environmental conditions, but also point to new targets like the biotechnological improvement of salt tolerance in crops."

In principle this discovery could revolutionize saline agriculture worldwide by laying the groundwork of understanding necessary to appropriately using salt resistance genes and gene networks in crops to enable them to grow in desert and saline environments.

The DOE JGI team first sequenced, assembled and annotated the 26.2-million base genome of E. rubrum. The team found that the genome contained just over 10,000 predicted genes.

They also found that the E. rubrum proteins had higher aspartic and glutamic acid amino acid levels than expected. When the team compared E. rubrum's gene families against those in two other halophilic species (Wallemia ichthyophaga and Hortaea werneckii), they found that high acidic residues were common in all three species, a general trait all salt-tolerant microbes share.

To learn more about the fungus' tolerance for salt, Tami Kis Papo at the University of Haifa grew samples in liquid and solid media at salinities from zero up to 90 percent of Dead Sea water. The researchers found that it had viable spores when grown in 70 percent diluted Dead Sea water, conditions equivalent to an algal bloom in the Dead Sea 20 years ago.

A study conducted by Alfons R. Weig at the University of Bayreuth of E. rubrum's transcriptome, that small fraction of the genome that encodes the RNA molecules in order to carry out instructions to build and maintain cells, showed that in high salinity conditions, the fungal cells need to keep cell membrane transport under tight control. "This clearly indicates that the fungus tries to cope 'actively' with its extreme environment and does not simply fall into dormancy," the team noted, "as might be expected by the greatly reduced growth rates."

In addition to contributing to a better understanding of salt tolerance mechanisms for agriculture, this work may also have applicability to the DOE's interests in developing new strategies to improve biofuels production. For instance, the DOE JGI and its partners are sourcing microbial and fungal enzymes for more effective biomass pretreatment with ionic liquids, environmentally benign organic salts often used as green chemistry substitutes for volatile organic solvents.

.


Related Links
Joint Genome Institute
Life Beyond Earth
Lands Beyond Beyond - extra solar planets - news and science






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





EXO LIFE
Why a bacterium got its curve
Princeton NJ (SPX) May 09, 2014
Drawing from his engineering background, Princeton University researcher Alexandre Persat had a notion as to why the bacteria Caulobacter crescentus are curved - a hunch that now could lead to a new way of studying the evolution of bacteria, according to research published in the journal Nature Communications. Commonly used in labs to study cell division, C. crescentus naturally take on a ... read more


EXO LIFE
Saturn in opposition tonight, will appear next to the moon

LRO View of Earth

Russia to begin Moon colonization in 2030

Astrobotic Partners With NASA To Develop Robotic Lunar Landing Capability

EXO LIFE
Opportunity In Search Of Aluminum-Hydroxyl Clays

MAVEN Solar Wind Ion Analyzer Will Look at Key Player in Mars Atmosphere Loss

Against the current with lava flows

NASA wants greenhouse on Mars by 2021

EXO LIFE
Chris Hadfield's 'Space Oddity' video to be taken off YouTube

A light-speed voyage to the distant future

'Convergent' Research Solves Problems that Cross Disciplinary Boundaries

Pioneering Test Pilot Bill Dana Dies at Age 83

EXO LIFE
Moon rover Yutu comes closer to public

The Phantom Tiangong

New satellite launch center to conduct joint drill

China issues first assessment on space activities

EXO LIFE
Three astronauts land back on Earth in Soyuz capsule

Expedition 39 Trio Wrapping Up Six Months on Station

Botanical Studies, Dragon Departure Preps for ISS Crew

NASA hopes to continue cooperation with Russia on ISS

EXO LIFE
Replacing Russian-made rocket engines is not easy

Pre-launch processing begins for the O3b Networks satellites

US sanctions against Russia had no effect on International Launch Services

SHERPA launch service deal to deploy 1200 kilo smallsat payloads

EXO LIFE
Giant telescope tackles orbit and size of exoplanet

New Exomoon Hunting Technique Could Find Solar System-like Moons

Odd planet, so far from its star

Length of Exoplanet Day Measured for First Time

EXO LIFE
China aids in cutting down space debris

Space junk problem discussed

Exelis advancing sensor detection system

Airborne surveillance program Gorgon Stare getting Exelis sensors




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.