Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. 24/7 Space News .




WATER WORLD
Rutgers findings may predict the future of coral reefs in a changing world
by Staff Writers
New Brunswick NJ (SPX) Jun 10, 2013


This is a Scanning electron microscope image of calcium carbonate crystals grown in artificial seawater containing individual coral acidic protein (CARP3). These crystals were formed both in pH 8.2 and 7.6. The reticulate structure of the crystal occurs due to the presence of organic material. Credit: Tali Mass, Rutgers University.

Rutgers scientists have described for the first time the biological process of how corals create their skeletons - destined to become limestones - which form massive and ecologically vital coral reefs in the world's oceans.

In a publication in Current Biology, Tali Mass and her colleagues at the Rutgers Institute of Marine and Coastal Sciences show that specific proteins produced by corals can form limestones in test tubes. These proteins, secreted by corals, precipitate carbonate that forms the corals' characteristic skeleton.

"This is a first step toward understanding how coral build their skeleton," said Mass, a post-doctoral researcher and lead author of the study. The researchers also found that the reaction occurs regardless of water acidity, which suggests that these organisms will survive in coming centuries when the world's oceans are predicted to become more acidic. That also potentially bodes well for the health of the world's coral reefs, which support ecosystems essential to marine diversity that in turn support fisheries.

"The good news is that the change in acidity will not stop the function of these proteins," said Mass. But she is quick to warn that her work shouldn't make people complacent. "Pollution and rising water temperatures also pose major threats to these essential marine organisms."

Limestone rocks are all around us and have been central human history. The Egyptians used them to build pyramids and today they are still used to build monuments. Surprisingly, all limestones are created by living organisms. The rocks are everywhere, it seems, but how they form has not been answered until now.

Scientists have long known that corals made their external skeletons from a matrix of secreted proteins, but didn't understand the mechanism. Mass and her colleagues in Paul Falkowski's laboratory began by asking which proteins might be responsible for the process. They identified over 30 proteins from coral skeleton that could be involved. They described that work earlier this year in the journal, Proceedings of the National Academy of Sciences.

At the same time they searched for genes in the coral genome for proteins that could potentially assist with production of the skeletal mineral calcium carbonate. For this, the scientists went to Debashish Bhattacharya, professor of ecology, evolution and natural resources, director of the Rutgers Genome Cooperative, and a co-author of the paper. A genome is the entirety of an organism's genetic information (DNA) - in this case, of the particular coral that the researchers were studying.

"We produced a 'draft' genome," Bhattacharya said. "Basically, that's a genome that is not yet fully assembled into chromosomes. So, you don't have the DNA puzzle completely put together, but you have all of the pieces of that puzzle and can figure out what the many pieces - for example, the genes - do in the coral."

The genome analysis, done by Ehud Zelzion, bioinformaticist at the Genome Cooperative, led the researchers to four particular proteins. The genes encoding these proteins were cloned and expressed in bacteria, then isolated and placed in solutions representing the current acidity of seawater and the more acidic levels scientists predict for the end of the century.

On the commonly used pH scale, where lower numbers are more acidic, today's seas are a moderately alkaline 8.2. But they are expected to creep toward 7.6 as carbon dioxide concentration increases in the air. Using a scanning electron microscope and other measurement devices, the scientists examined the proteins and found that all had begun to precipitate calcium carbonate crystals in the test tube at both pH levels.

"This work goes a long way toward explaining how corals precipitate calcium carbonate skeletons and clearly shows that the reaction can work at more acidic pH levels," said Falkowski, also a co-author of the study and Board of Governors Professor of geological and marine sciences. "It doesn't mean that ocean acidification is not a concern, but it does suggest that corals will still be able to form skeletons, and coral reefs will continue to exist."

.


Related Links
Rutgers University
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





WATER WORLD
EU closes shark finning loophole
Brussels (AFP) June 06, 2013
The European Union on Thursday closed a last loophole in its ban on shark finning, the long-contested practice of fisherman slicing the fins off and then throwing the still live sharks back overboard to die. The EU banned shark finning in 2003 but special permits still allowed some fisherman to "process" the sharks they caught on board, with the fins and body then being landed together at on ... read more


WATER WORLD
LADEE Arrives at Wallops for Moon Mission

NASA's GRAIL Mission Solves Mystery of Moon's Surface Gravity

Moon dust samples missing for 40 years found in Calif. warehouse

Unusual minerals in moon craters may have been delivered from space

WATER WORLD
SciTechTalk: Mars rover readies for 'road trip' on the Red Planet

First woman in space ready for 'one-way flight to Mars'

Aging Mars rover makes new water discoveries

Driving to 'Solander Point'

WATER WORLD
Why innovation thrives in cities

Peanut butter, pyjamas, parmesan launched into space

White House moves to curb 'patent trolls'

A certain level of stress is necessary

WATER WORLD
Final Countdown for Shenzhou 10

What's New for Shenzhou 10

China completes satellite ground station network

China publicizes Earth observation satellite's HD photos

WATER WORLD
International trio takes shortcut to space station

Science and Maintenance for Station Crew, New Crew Members Prep for Launch

ESA Euronews: Living in space

Next destination: space

WATER WORLD
Europe launches record cargo for space station

New chief urges Ariane 5 modification for big satellites

The Future of Space Launch

Rocket Engine Maker Proton-PM to Invest in New Products

WATER WORLD
Kepler Stars and Planets are Bigger than Previously Thought

Astronomers gear up to discover Earth-like planets

Stars Don't Obliterate Their Planets (Very Often)

'Dust trap' around distant star may solve planet formation mystery

WATER WORLD
Next-gen consoles battle for new gamers

A path to compact, robust sources for ultrashort laser pulses

Dutch duo peddle old bikes as fashion, furniture

To improve today's concrete, do as the Romans did




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement