Subscribe free to our newsletters via your
. 24/7 Space News .




CARBON WORLDS
Routes towards defect-free graphene
by Staff Writers
Oxford, UK (SPX) Feb 06, 2013


The Oxford-led team, which includes researchers from Forschungszentrum Juelich Germany, the University of Ioannina Greece, and Renishaw plc, has shown that it is also possible using the new technique to selectively grow bilayer domains of graphene - a double layer of closely packed carbon atoms - which are of particular interest for their unusual electrical properties.

A new way of growing graphene without the defects that weaken it and prevent electrons from flowing freely within it could open the way to large-scale manufacturing of graphene-based devices with applications in fields such as electronics, energy, and healthcare.

A team led by Oxford University scientists has overcome a key problem of growing graphene - a one atom-thick layer of carbon - when using an established technique called chemical vapour deposition, that the tiny flakes of graphene form with random orientations, leaving defects or 'seams' between flakes that grow together.

The discovery, reported in a paper to be published in ACS Nano, reveals how these graphene flakes, known as 'domains', can be lined up by manipulating the alignment of carbon atoms on a relatively cheap copper foil - the atomic structure of the copper surface acts as a 'guide' that controls the orientation of the carbon atoms growing on top of them.

A combination of control of this copper guide and the pressure applied during growth makes it possible to control the thickness of these domains, the geometry of their edges and the grain boundaries where they meet - 'seams' that act as obstacles to the smooth progress of electrons necessary to create efficient graphene-based electrical and electronic devices.

'Current methods of growing flakes of graphene often suffer from graphene domains not lining up,' said Professor Nicole Grobert of Oxford University's Department of Materials who led the work.

'Our discovery shows that it is possible to produce large sheets of graphene where these flakes, called 'domains', are well-aligned, which will create a neater, stronger, and more 'electron-friendly' material.'

In principle the size of the sheet of graphene that can be created is only limited by the size of the copper base sheet.

The Oxford-led team, which includes researchers from Forschungszentrum Juelich Germany, the University of Ioannina Greece, and Renishaw plc, has shown that it is also possible using the new technique to selectively grow bilayer domains of graphene - a double layer of closely packed carbon atoms - which are of particular interest for their unusual electrical properties.

'People have used copper as a base material before, but this is the first time anyone has shown that the many different types of copper surfaces can indeed strongly control the structure of graphene,' said Professor Grobert.

'It's an important step towards finding a way of manufacturing graphene in a controlled fashion at an industrial scale, something that is essential if we are to bridge the gap between fundamental research and building useful graphene-based technologies.'

.


Related Links
University of Oxford
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CARBON WORLDS
Carbon price drop deemed 'wake-up call'
Brussels (UPI) Jan 28, 2013
A sharp drop in carbon allowance prices is a "wake-up call" showing European Commission reforms need to be implemented, the European Union's climate action chief says. EU Commissioner for Climate Action Connie Hedegaard reacted with dismay Thursday as prices for carbon allowances on the bloc's open market Emissions Trading System plunged to all-time lows following a move by a key Europe ... read more


CARBON WORLDS
Building a lunar base with 3D printing

US, Europe team up for moon fly-by

Russia to Launch Lunar Mission in 2015

US, Europe team up for moon fly-by

CARBON WORLDS
Mapping Mars

Weekend Test on Mars Was Preparation to Drill a Rock

AAS Division For Planetary Sciences Issues Statement On Mars 2020 Program

Curiosity Maneuver Prepares for Drilling

CARBON WORLDS
Supersonic skydiver even faster than thought

Ahmadinejad says ready to be Iran's first spaceman

Iran's Bio-Capsule Comes Back from Space

A Hero For Humankind: Yuri Gagarin's Spaceflight

CARBON WORLDS
Reshuffle for Tiangong

China to launch 20 spacecrafts in 2013

Mr Xi in Space

China plans manned space launch in 2013: state media

CARBON WORLDS
NASA to Send Inflatable Pod to International Space Station

ISS to get inflatable module

ESA workhorse to power NASA's Orion spacecraft

Competition Hopes To Fine Tune ISS Solar Array Shadowing

CARBON WORLDS
Final checkout underway for the Starsem Soyuz launch with Globalstar spacecraft

Zenit Engine Worked Normally

NASA Launches Rocket from Wallops Flight Facility in Virginia

Intelsat 27 Launch Unsuccessful

CARBON WORLDS
Are Super-Earths Actually Mini-Neptunes?

Herschel Finds Past-Prime Star May Be Making Planets

Stars can be late parents

Researchers develop model for identifying habitable zones around star

CARBON WORLDS
South Korean Satellite Makes First Contact with Ground

Novel materials shake ship scum

Penn Research Shows Mechanism Behind Wear at the Atomic Scale

NTU research embraces laser and sparks cool affair




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement