Subscribe free to our newsletters via your
. 24/7 Space News .




IRON AND ICE
Rosetta fuels debate on origin of Earth's oceans
by Staff Writers
Paris (ESA) Dec 11, 2014


Illustration showing the two main reservoirs of comets in the Solar System: the Kuiper Belt, at a distance of 30-50 astronomical units (AU: the Earth-Sun distance) from the Sun, and the Oort Cloud, which may extend up to 50 000-100 000 AU from the Sun. Halley's comet is thought to originate from the Oort Cloud, while 67P/Churyumov-Gerasimenko, the focus of ESA's Rosetta mission, hails from the Kuiper Belt. It is now in a 6.5-year orbit around the Sun between the orbits of Earth and Mars at its closest and just beyond Jupiter at its furthest. Image courtesy ESA. For a larger version of this image please go here.

ESA's Rosetta spacecraft has found the water vapour from its target comet to be significantly different to that found on Earth. The discovery fuels the debate on the origin of our planet's oceans.

The measurements were made in the month following the spacecraft's arrival at Comet 67P/Churyumov-Gerasimenko on 6 August. It is one of the most anticipated early results of the mission, because the origin of Earth's water is still an open question.

One of the leading hypotheses on Earth's formation is that it was so hot when it formed 4.6 billion years ago that any original water content should have boiled off. But, today, two thirds of the surface is covered in water, so where did it come from?

In this scenario, it should have been delivered after our planet had cooled down, most likely from collisions with comets and asteroids. The relative contribution of each class of object to our planet's water supply is, however, still debated.

The key to determining where the water originated is in its 'flavour', in this case the proportion of deuterium - a form of hydrogen with an additional neutron - to normal hydrogen.

This proportion is an important indicator of the formation and early evolution of the Solar System, with theoretical simulations showing that it should change with distance from the Sun and with time in the first few million years.

One key goal is to compare the value for different kinds of object with that measured for Earth's oceans, in order to determine how much each type of object may have contributed to Earth's water.

Comets in particular are unique tools for probing the early Solar System: they harbour material left over from the protoplanetary disc out of which the planets formed, and therefore should reflect the primordial composition of their places of origin.

But thanks to the dynamics of the early Solar System, this is not a straightforward process. Long-period comets that hail from the distant Oort cloud originally formed in Uranus-Neptune region, far enough from the Sun that water ice could survive.

They were later scattered to the Solar System's far outer reaches as a result of gravitational interactions with the gas giant planets as they settled in their orbits.

Conversely, Jupiter-family comets like Rosetta's comet were thought to have formed further out, in the Kuiper Belt beyond Neptune. Occasionally these bodies are disrupted from this location and sent towards the inner Solar System, where their orbits become controlled by the gravitational influence of Jupiter.

Indeed, Rosetta's comet now travels around the Sun between the orbits of Earth and Mars at its closest and just beyond Jupiter at its furthest, with a period of about 6.5 years.

Previous measurements of the deuterium/hydrogen (D/H) ratio in other comets have shown a wide range of values. Of the 11 comets for which measurements have been made, it is only the Jupiter-family Comet 103P/Hartley 2 that was found to match the composition of Earth's water, in observations made by ESA's Herschel mission in 2011.

By contrast, meteorites originally hailing from asteroids in the Asteroid Belt also match the composition of Earth's water. Thus, despite the fact that asteroids have a much lower overall water content, impacts by a large number of them could still have resulted in Earth's oceans.

It is against this backdrop that Rosetta's investigations are important. Interestingly, the D/H ratio measured by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis, or ROSINA, is more than three times greater than for Earth's oceans and for its Jupiter-family companion, Comet Hartley 2. Indeed, it is even higher than measured for any Oort cloud comet as well.

"This surprising finding could indicate a diverse origin for the Jupiter-family comets - perhaps they formed over a wider range of distances in the young Solar System than we previously thought," says Kathrin Altwegg, principal investigator for ROSINA and lead author of the paper reporting the results in the journal Science this week.

"Our finding also rules out the idea that Jupiter-family comets contain solely Earth ocean-like water, and adds weight to models that place more emphasis on asteroids as the main delivery mechanism for Earth's oceans."

"We knew that Rosetta's in situ analysis of this comet was always going to throw up surprises for the bigger picture of Solar System science, and this outstanding observation certainly adds fuel to the debate about the origin of Earth's water," says Matt Taylor, ESA's Rosetta project scientist.

"As Rosetta continues to follow the comet on its orbit around the Sun throughout next year, we'll be keeping a close watch on how it evolves and behaves, which will give us unique insight into the mysterious world of comets and their contribution to our understanding of the evolution of the Solar System."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
ESA Rosetta
Asteroid and Comet Mission News, Science and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








IRON AND ICE
Comet probe in race against time to crown stellar feat
Paris (AFP) Nov 14, 2014
Europe's deep-space robot lab Philae worked against the clock Friday, attempting to drill into a comet 510 million kilometres (320 million miles) from Earth to crown a historic exploration before its battery runs out. Charged with 60 hours of onboard power, the lander bounced twice after touchdown Wednesday, settling in a crevice in a mystery location, shadowed from battery-boosting sunlight ... read more


IRON AND ICE
UK Plans to Drill Into Moon, Explore Feasibility of Manned Base

Carnegie Mellon Unveils Lunar Rover "Andy"

Why we should mine the moon

Young Volcanoes on the Moon

IRON AND ICE
Mars is a Four-Letter Word

Flash-Memory Reformat Planned

Mars mountain may have arisen from lake sediments: NASA

Curiosity finds clues to how water helped shape Mars

IRON AND ICE
NASA parodies 'All about that Bass' to promote space exploration

NASA's New Orion Spacecraft Completes First Spaceflight Test

FinalFlight to Scatter Ashes in the Stratosphere over Australia

NASA Exploration Programs Face Cost, Technical, Scheduling Issues

IRON AND ICE
China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

China develops new rocket for manned moon mission: media

Service module of China's returned lunar orbiter reaches L2 point

IRON AND ICE
Boeing Covers Groundwork in Second Milestone For Commercial Crew

ATV views Space Station as never before

Orbital says it will complete ISS deliveries by end of 2016

OPALS: Light Beams Let Data Rates Soar

IRON AND ICE
NASA, SpaceX reschedule next week's ISS resupply launch

Final payload integration begins for O3b Networks' four satellites

ULA signs Orbital Sciences to launch Cygnus cargo mission to ISS

XCOR Presents New Platforms For Suborbital Science at AGU

IRON AND ICE
Astronomers spot Pluto-size objects swarming about young sun

Observing Solar System Worlds as if They Were Distant Exoplanets

Finding infant earths and potential life just got easier

Queen's scientist leads study of 'Super-Earth'

IRON AND ICE
Airbus Defence and Space signs contract for Microwave Sounder instruments

Researchers develop clothes that can monitor and transmit biomedical info on wearers

China developing space-based 3D printing machine

BAE Systems to produce prototype counter-radar system




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.