Subscribe free to our newsletters via your
. 24/7 Space News .




ROBO SPACE
Robotic Refueling Mission Begins With Space Station Robotics
by Adrienne Alessandro Goddard Space Flight Center
Greenbelt MD (SPX) Mar 08, 2012


On July 12, 2011, spacewalking astronauts Mike Fossum and Ron Garan successfully transferred the Robotic Refueling Mission module from the Atlantis shuttle cargo bay to a temporary platform on the International Space Station's Dextre robot. (NASA). For a larger version of this image please go here.

NASA's highly anticipated Robotic Refueling Mission (RRM) began operations on the International Space Station with the Canadian Dextre robot and RRM tools March 7-9, 2012, marking important milestones in satellite-servicing technology and the use of the space station robotic capabilities.

A joint effort between NASA and the Canadian Space Agency (CSA), RRM is an external station experiment designed to demonstrate the technologies, tools, and techniques needed to robotically service and refuel satellites in orbit, especially those not built with servicing in mind. RRM represents the first time the space station's Dextre robot is used for technology research and development, moving it beyond robotic maintenance of the orbiting superstructure.

The RRM Gas Fittings Removal task represents the first use of RRM tools in orbit. During the task, robot operators at NASA's Johnson Space Center remotely control Dextre to retrieve RRM tools and go through the tasks required to remove representative fittings (located on the RRM module) used on many spacecraft for filling various fluids and gases prior to launch.

Subsequent RRM operations include practicing robotic satellite refueling and servicing tasks using Dextre, RRM tools, and the satellite piece parts and interfaces contained within and covering the cube-shaped RRM module.

The International Space Station played a critical role in RRM development. "RRM showcases the best of what the International Space Station can offer as a test bed for state-of-the-art space technologies," says Frank Cepollina, veteran leader of five Hubble Space Telescope servicing missions and Associate Director of the Satellite Servicing Capabilities Office (SSCO) at NASA's Goddard Space Flight Center in Greenbelt, Md.

"The Hubble servicing missions taught us the importance and value of getting innovative, cutting-edge technologies to orbit quickly to deliver great results," continued Cepollina. "With the established infrastructure that the space station provides, our RRM team had support as we conceived, designed, built, and flew the RRM demo to space station in 18 months - a timeline that many declared impossible."

The impact of the ISS as a useful technology test bed cannot be overstated, he said. "Fresh satellite-servicing technologies will be demonstrated in a real space environment within months instead of years. This is huge. This represents real progress in space technology advancement."

Launched to the space station in July 2011 aboard the last space shuttle mission (STS-135), RRM is the first in-orbit demonstration to test, prove and advance the technology needed to perform robotic servicing on spacecraft not designed for refueling and repair. RRM and Dextre will proceed through several tasks over about the next two years designed to demonstrate a wide array of servicing capabilities.

RRM results are expected to reduce the risks associated with satellite servicing as well as lay the foundation and encourage future robotic servicing missions. Such future missions could include the repair and repositioning of orbiting satellites.

"The significance of RRM is that it demonstrates that robotic satellite-servicing technology exists now and it works correctly on orbit," says Benjamin Reed, Deputy Project Manager of SSCO.

The Canadian Space Agency is an essential partner in RRM operations. Dextre, the space station's twin-armed Canadian robotic "handyman," was developed by the CSA to perform delicate assembly and maintenance tasks on the station's exterior as an extension of its 57-foot-long (17.6 meter) robotic arm, Canadarm2.

CSA wrote the software to control Dextre during RRM operations. Along with NASA Goddard and Johnson Space Center, CSA tested the software with flight-like tools and the RRM high-fidelity mockup in January-February 2012 at the MacDonald, Dettwiler and Associates Ltd. facility in Brampton, Canada.

"The Canadian Space Agency has played a pivotal role in the development of space robotics, from the early days of the space shuttle to the work they are doing with Dextre on ISS," says Cepollina.

Included within the RRM module are four unique tools developed at Goddard: the Wire Cutter and Blanket Manipulation Tool, the Multifunction Tool, the Safety Cap Removal Tool, and the Nozzle Tool. Each tool is stowed in its own storage bay until Dextre retrieves it for use. Each tool contains two integral cameras with built-in LEDs to give mission controllers the ability to see and control the tools.

Viewers following along with the first phase of the Gas Fittings Removal task would see the following detailed activities. Mission operators will direct Dextre to remove three of the RRM tools from the module and perform functional checkouts prior to in-orbit operations.

The RRM Multifunction tool will be used to release the "launch locks" that kept three tool adapters tightly secure during the shuttle flight of RRM to the space station. The next operation will entail Dextre using the Wire Cutter Tool to cut the lock wire that every spacecraft employs.

This activity will show that even tiny lock wire, the thickness of four sheets of paper, can be isolated and cut using the latest robotic technologies, tools, and precision techniques.

The Gas Fittings Removal task follows on the heels of the 2011 RRM Launch Lock Removal and Vision tasks. On September 6-7, 2011, mission controllers used the Dextre robot to successfully release the locks that kept the four RRM Tools secure within the RRM module during the shuttle flight to the station.

They also used Dextre's built-in hand camera to image the RRM hardware between sunlight and darkness, providing data that SSCO is using to develop machine vision algorithms that work collaboratively with the dynamic in-orbit lighting.

RRM operations are monitored and remote controlled by flight controllers at Goddard Space Flight Center, Johnson Space Center, Marshall Space Flight Center, and the Canadian Space Agency's control center in St. Hubert, Quebec.

Drawing upon 20 years of experience servicing the Hubble Space Telescope, SSCO initiated the development of RRM in 2009. RRM results to date will be presented at the Second International Workshop on On-Orbit Satellite Servicing, hosted and held at NASA's Goddard Space Flight Center May 30-31, 2012.

Satellite servicing with astronauts is not new for NASA. Skylab, NASA's first space station, was repaired in space in 1973. Solar Maximum and Syncom IV, with help from the shuttle, were successfully repaired in the 1980's. In the 1990's NASA serviced the Compton Gamma Ray Observatory, Intelsat 6 and executed a series of highly successful servicing missions to the Hubble Space Telescope.

More recently, human and robotic servicing capabilities have contributed to the assembly, upkeep, repair and maintenance of the space station. With RRM, NASA can begin the work of confirming specific robotic satellite-servicing technologies needed for the development of future robotic servicing spacecraft.

.


Related Links
Robotic Refueling Mission
All about the robots on Earth and beyond!






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ROBO SPACE
Enjoying massage of the future at the world's top IT fair
Hanover, Germany (AFP) March 7, 2012
With all the frantic deal-making and head-spinning gadgets at the world's top IT fair, it is perhaps no surprise that a chair promising the benefit of two hours sleep in 20 minutes drew big queues. The "brainLight" system, which its makers claim is unique, uses sound, light and shiatsu massage to send the user into a trance-like state in mere minutes. "It's just like getting two or three ... read more


ROBO SPACE
Apollo 15: Follow the Tracks

Looking at the Man in the Moon

Lunar lander firing up for touchdown

China to launch moon-landing orbiter in 2013

ROBO SPACE
NASA Mars Orbiter Catches Twister in Action

Working models for the gravitational field of Phobos

Community College Scholars Selected to Design Rovers

Slight Cleaning of Opportunity Mars Rover Solar Panels

ROBO SPACE
Tile Makers Creating Orion Shield

Weird and wonderful gadgets wow world's top IT fair

O, Pioneers! (part 2): The Derelicts of Space

Workers Remove Apollo-era Engines from Crawler at VAB

ROBO SPACE
China hopes to send Long March-5 rocket into space in 2014

Upgraded carrier rocket ready for China's first manned space docking

Long March 7 carrier rocket to lift off in five years

Logistics, recycling key to China's space station

ROBO SPACE
Though Shuttle Retired, ISS Still Open For Business, Research Going Strong

New date set for Europe's resupply mission to ISS

A New Website Sharing ISS Benefits For Humanity

Harper Government renews commitment to ISS

ROBO SPACE
Engineers Tuck NuSTAR in its Nose Cone

Lockheed Martin Selects Alaska's Kodiak Launch Complex To Support Future Athena Launches

The initial Ariane 5 for launch in 2012 completes its final assembly

Arianespace maintains its open dialog with the space insurance sector

ROBO SPACE
Researchers say galaxy may swarm with 'nomad planets'

New model provides different take on planetary accretion

A Planetary Exo-splosion

Extending the Habitable Zone for Red Dwarf Stars

ROBO SPACE
Smart, self-healing hydrogels open far-reaching possibilities in medicine, engineering

'SimCity' game rebuilt for age of climate change

Apple unveils new iPad, Apple TV box

Dr. Strangelove and How I Learned to Love Space Debris




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement