Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. 24/7 Space News .




ENERGY TECH
Rice cultivates green batteries from plant
by Staff Writers
Houston TX (SPX) Dec 13, 2012


File image: Lithium-ion battery.

Here's a reason to be glad about madder: The climbing plant has the potential to make a greener rechargeable battery. Scientists at Rice University and the City College of New York have discovered that the madder plant, aka Rubia tinctorum, is a good source of purpurin, an organic dye that can be turned into a highly effective, natural cathode for lithium-ion batteries. The plant has been used since ancient times to create dye for fabrics.

The discovery is the subject of a paper that appears today in Nature's online, open-access journal Scientific Reports.

The goal, according to lead author Arava Leela Mohana Reddy, a research scientist in the Rice lab of materials scientist Pulickel Ajayan, is to create environmentally friendly batteries that solve many of the problems with lithium-ion batteries in use today.

"Green batteries are the need of the hour, yet this topic hasn't really been addressed properly," Reddy said.

"This is an area that needs immediate attention and sustained thrust, but you cannot discover sustainable technology overnight. The current focus of the research community is still on conventional batteries, meeting challenges like improving capacity. While those issues are important, so are issues like sustainability and recyclability."

While lithium-ion batteries have become standard in conventional electronics since their commercial introduction in 1991, the rechargeable units remain costly to manufacture, Reddy said. "They're not environmentally friendly.

They use cathodes of lithium cobalt oxide, which are very expensive. You have to mine the cobalt metal and manufacture the cathodes in a high-temperature environment. There are a lot of costs.

"And then, recycling is a big issue," he said. "In 2010, almost 10 billion lithium-ion batteries had to be recycled, which uses a lot of energy. Extracting cobalt from the batteries is an expensive process."

Reddy and his colleagues came across purpurin while testing a number of organic molecules for their ability to electrochemically interact with lithium and found purpurin most amenable to binding lithium ions.

With the addition of 20 percent carbon to add conductivity, the team built a half-battery cell with a capacity of 90 milliamp hours per gram after 50 charge/discharge cycles. The cathodes can be made at room temperature, he said.

"It's a new mechanism we are proposing with this paper, and the chemistry is really simple," Reddy said. He suggested agricultural waste may be a source of purpurin, as may other suitable molecules, which makes the process even more economical.

Innovation in the battery space is needed to satisfy future demands and counter environmental issues like waste management, "and hence we are quite fascinated by the ability to develop alternative electrode technologies to replace conventional inorganic materials in lithium-ion batteries," said Ajayan, Rice's Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry.

"We're interested in developing value-added chemicals, products and materials from renewable feedstocks as a sustainable technology platform," said co-lead author George John, a professor of chemistry at the City College of New York-CUNY and an expert on bio-based materials and green chemistry.

"The point has been to understand the chemistry between lithium ions and the organic molecules. Now that we have that proper understanding, we can tap other molecules and improve capacity."

Recent work by the Ajayan Group combines silicon and a porous nickel current collector in a way that has proven effective as a high-capacity anode, the other electrode in a lithium-ion battery. That research was reported recently in the American Chemical Society journal Nano Letters.

But Reddy hopes to formulate completely green batteries. The team is looking for organic molecules suitable for anodes and for an electrolyte that doesn't break the molecules down.

He fully expects to have a working prototype of a complete organic battery within a few years. "What we've come up with should lead to much more discussion in the scientific community about green batteries," he said.

Co-authors of the paper are visiting scholar Porramate Chumyim and former graduate student Sanketh Gowda of Rice; postdoctoral researcher Subbiah Nagarajan, facilities manager Padmanava Pradhan and graduate student Swapnil Jadhav of the City College of New York; and Madan Dubey of the U.S. Army Research Laboratory. The research was funded by the Army Research Office. Read the paper here

.


Related Links
Rice University
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ENERGY TECH
Argonne National Lab Selected as DOE's Batteries and Energy Storage Hub
Chicago IL (SPX) Dec 04, 2012
U.S. Secretary of Energy Steven Chu was joined by Senator Dick Durbin, Illinois Governor Pat Quinn, and Chicago Mayor Rahm Emanuel to announce that a multi-partner team led by Argonne National Laboratory has been selected for an award of up to $120 million over five years to establish a new Batteries and Energy Storage Hub. The Hub, to be known as the Joint Center for Energy Storage Resear ... read more


ENERGY TECH
Apollo's Lunar Dust Data Being Restored

To the moon and back for less than 2 billion dollars

NASA's GRAIL Creates Most Accurate Moon Gravity Map

Chinese astronauts may grow veg on Moon

ENERGY TECH
Curiosity Rover Nearing Yellowknife Bay

Charitum Montes: a cratered winter wonderland

Opportunity Continues Rock Studies

Orbiter Spies Where Rover's Cruise Stage Hit Mars

ENERGY TECH
China patent office becomes world's largest: WIPO

What happens to plant growth when you remove gravity?

Scientists say NASA's budget inadequate for its goals

What trends will take upper hand in space exploration?

ENERGY TECH
Mr Xi in Space

China plans manned space launch in 2013: state media

China to launch manned spacecraft

Tiangong 1 Parked And Waiting As Shenzhou 10 Mission Prep Continues

ENERGY TECH
Medical Ops, Fan Checks for Space Crew; New Trio Checks Soyuz

Khrunichev Completes Nauka Space Station Module

New Crew of ISS to Perform Two Spacewalks

Space Station to reposition for science

ENERGY TECH
Russia works to fix satellite's off-target orbit

ULA Launch Monopoly to End

SPACEX Awarded Two EELV Class Missions From The USAF

Russia Set to Launch Telecoms Satellite for Gazprom

ENERGY TECH
Astronomers discover and 'weigh' infant solar system

Search for Life Suggests Solar Systems More Habitable than Ours

Do missing Jupiters mean massive comet belts?

Brown Dwarfs May Grow Rocky Planets

ENERGY TECH
Jury rules Apple iPhone violated MobileMedia patents

XTAR Wins $8 Million In New Business

Boeing, BMW Group to collaborate on carbon fiber recycling

Yahoo! seeks slice of smartphone photo-sharing pie




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement