Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Rice chemists gain edge in next-gen energy
by Staff Writers
Houston TX (SPX) Nov 05, 2014


A thin, flexible film developed at Rice University shows excellent potential as a hydrogen catalyst or as an energy storage device. The two-dimensional film could be a cost-effective component in such applications as fuel cells. Image courtesy Tour Group/Rice University.

Rice University scientists who want to gain an edge in energy production and storage report they have found it in molybdenum disulfide. The Rice lab of chemist James Tour has turned molybdenum disulfide's two-dimensional form into a nanoporous film that can catalyze the production of hydrogen or be used for energy storage.

The versatile chemical compound classified as a dichalcogenide is inert along its flat sides, but previous studies determined the material's edges are highly efficient catalysts for hydrogen evolution reaction (HER), a process used in fuel cells to pull hydrogen from water.

Tour and his colleagues have found a cost-effective way to create flexible films of the material that maximize the amount of exposed edge and have potential for a variety of energy-oriented applications.

The Rice research appears in the journal Advanced Materials. Molybdenum disulfide isn't quite as flat as graphene, the atom-thick form of pure carbon, because it contains both molybdenum and sulfur atoms.

When viewed from above, it looks like graphene, with rows of ordered hexagons. But seen from the side, three distinct layers are revealed, with sulfur atoms in their own planes above and below the molybdenum. This crystal structure creates a more robust edge, and the more edge, the better for catalytic reactions or storage, Tour said.

"So much of chemistry occurs at the edges of materials," he said. "A two-dimensional material is like a sheet of paper: a large plain with very little edge. But our material is highly porous. What we see in the images are short, 5- to 6-nanometer planes and a lot of edge, as though the material had bore holes drilled all the way through."

The new film was created by Tour and lead authors Yang Yang, a postdoctoral researcher; Huilong Fei, a graduate student; and their colleagues.

It catalyzes the separation of hydrogen from water when exposed to a current. "Its performance as a HER generator is as good as any molybdenum disulfide structure that has ever been seen, and it's really easy to make," Tour said. While other researchers have proposed arrays of molybdenum disulfide sheets standing on edge, the Rice group took a different approach.

First, they grew a porous molybdenum oxide film onto a molybdenum substrate through room-temperature anodization, an electrochemical process with many uses but traditionally employed to thicken natural oxide layers on metals. The film was then exposed to sulfur vapor at 300 degrees Celsius (572 degrees Fahrenheit) for one hour.

This converted the material to molybdenum disulfide without damage to its nano-porous sponge-like structure, they reported. The films can also serve as supercapacitors, which store energy quickly as static charge and release it in a burst.

Though they don't store as much energy as an electrochemical battery, they have long lifespans and are in wide use because they can deliver far more power than a battery. The Rice lab built supercapacitors with the films; in tests, they retained 90 percent of their capacity after 10,000 charge-discharge cycles and 83 percent after 20,000 cycles.

"We see anodization as a route to materials for multiple platforms in the next generation of alternative energy devices," Tour said. "These could be fuel cells, supercapacitors and batteries. And we've demonstrated two of those three are possible with this new material."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Rice University
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
A new generation of storage ring
Washington DC (SPX) Nov 04, 2014
A bright synchrotron source that emits over a wide part of the electromagnetic spectrum from the infrared to hard X-rays is currently being built in Lund, Sweden. The MAX IV facility presents a range of technical challenges for the team putting together its component parts in a storage-ring synchrotron system that will have a circumference of just a few hundred metres. Nevertheless, if the ... read more


ENERGY TECH
China examines the three stages of lunar test run

NASA's LRO Spacecraft Captures Images of LADEE's Impact Crater

New lunar mission to test Chang'e-5 technology

Next Chinese mission to moon will return to Earth

ENERGY TECH
You can't get to Mars, but your name can

A One Way Trip to Mars

Mars 2020 Will Continue Search for Habitability

NASA Seeks Ultra-lightweight Materials to Help Enable Journey to Mars

ENERGY TECH
NASA Program Enhances Climate Resilience at Agency Facilities

SpaceShipTwo Manufacturer May Face Setback After Crash in California

Eye-catching space technology restoring sight

Virgin crash sets back space tourism by years: experts

ENERGY TECH
China's Lunar Orbiter Makes Safe Landing, First in 40 Years

China's First Lunar Return Mission A Stunning Success

China completes first mission to moon and back

Wenchang to launch China's next space station

ENERGY TECH
Students text International Space Station using a 20-foot antenna

Student Experiments Lost in Antares Rocket Explosion

NASA to work with cargo partners despite rocket crash

Russian space station resupply rocket launches, docks at ISS

ENERGY TECH
Soyuz Installed at Baikonur, Expected to Launch Wednesday

Arianespace signs contract with ELV for ten Vega launchers

NASA Completes Initial Assessment after Orbital Launch Mishap

FY 15 launch schedule kicks off with GPS IIF-8 liftoff from 'The Cape'

ENERGY TECH
VLTI detects exozodiacal light

Yale finds a planet that won't stick to a schedule

In a first, astronomers map comets around another star

Getting To Know Super-Earths

ENERGY TECH
NMSU chemistry research could contribute to multiple applications

Active, biodegradable packaging for oily products

E-waste inferno burning brighter in China's recycling capital

Reverse engineering materials for more efficient heating and cooling




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.