Subscribe free to our newsletters via your
. 24/7 Space News .

Researchers from MIPT predict properties of surface
by Staff Writers
Moscow, Russia (SPX) Jan 15, 2015

These are side views of stable structures of rutile TiO2(110): (a) Ti2O3-(1+ 2), previously proposed in Refs. [7,9], (b) V-(4+ 1), (d) Ti3O3-(2+ 1), as well as (c) metastable Ti3O2-(1+ 2). Ti and O atoms are represented by small gray and big red balls, respectively. An O vacancy in V-(4+ 1) is represented by the dark gray ball. Structural features are highlighted by yellow shades. Image courtesy Qinggao Wang. For a larger version of this image please go here.

An article in Physical Review Letters, which was written by a group of researchers led by Qinggao Wang from MIPT's Laboratory of Computer Design of New Materials, investigates the surface of titanium dioxide crystals.

"We chose this substance because rutile, a mineral composed primarily of titanium dioxide (TiO2),is one of the most commonly used catalysts in chemistry, "Qinggao Wang said about choosing the subject of research.

In their work, the researchers used the USPEX method, developed by the head of the laboratory, Artem Oganov, who co-authored the article. Professor Oganov explains in detail:

"One of the most promising and challenging areas of materials design is predicting and describing the properties of the surface of a substance, where special surface phases are formed, whose chemical composition and structure may differ significantly from the internal structure. It's very difficult to describe and predict these surface phases, proceeding from basic elementary data.

"Theoretical methods of calculating the properties of surfaces are complicated by some major hindrances, but we've developed a very powerful and effective way to predict the structure and properties of crystal surfaces, based on our USPEX algorithm. We used it for one of the most studied types of surfaces, rutile, a catalyst consisting of titanium dioxide.

"There's a great number of articles about its surface, which purport to understand rutile's catalytic properties. However, if you look at these articles, you'll see that they contradict each other.

"Our method helped us predict how the structure and chemistry of the surface of rutile crystals will change, resolving existing discrepancies between empirical and theoretical data and paving the way to understanding how chemical reactions occur on the surface of this catalyst. This shows the potential of our theory for predicting surface phases, and we expect to obtain a large amount of data in this field."

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
Moscow Institute of Physics and Technology
Space Technology News - Applications and Research

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Developing New Materials For Energy Transduction
Washington DC (SPX) Jan 14, 2015
Transduction involving the conversion of energy from one form into another is common in many military and space devices, such as communications antennas (radio waves to electrical signals), thermoelectric generators (heat to electricity) and electric motors (electromagnetic to kinetic energy). Research efforts to develop new transductional materials, however, have largely been limited to l ... read more

Service Module of Chinese Probe Enters Lunar Orbit

Service module of China's lunar orbiter enters 127-minute orbit

Chinese spacecraft to return to moon's orbit

Russian Company Proposes to Build Lunar Base

Crystal-Rich Rock 'Mojave' is Next Mars Drill Target

Team Working on Strategy to Fix Flash Memory Issue

Lost and found in space: Beagle 2 seen on Mars 11 years on

UA-led HiRISE camera spots long-lost space probe on Mars

US venture capital funding near dot-com boom levels

Long duration weightlessness in space induces a blood shift

Experts explore the medical safety needs of civilian space travel

Singer Sarah Brightman delays space tourist training

China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

China develops new rocket for manned moon mission: media

Astronauts' year-long mission will test limits

Astronauts prepare for year-long stay on space station

Russian Cargo Spacecraft to Supply ISS With Black Caviar

Astronauts take shelter after alarm at space station

Firefly Space Systems and NASA have Inked Space Act Agreement

SpaceX CEO Elon Musk wants to shake up satellite industry

Vega ready to launch ESA spaceplane

Russian firm seals $1 billion deal to supply US rocket engines

Three-Planet System Holds Clues to Atmospheres of Earth-size Worlds

Meteorites weren't exactly the building blocks of young planets

A twist on planetary origins

NameExoWorlds contest opens

Atomic placement of elements counts for strong concrete

Scientists build rice grain-sized laser powered by quantum dots

A novel inorganic material emitting laser light in solution is discovered

Zinc oxide materials tapped for tiny energy harvesting devices

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.