Subscribe free to our newsletters via your
. 24/7 Space News .




CARBON WORLDS
Researchers 'detune' a molecule
by Staff Writers
Houston TX (SPX) Jan 20, 2014


Rice University physicist Douglas Natelson, left, and graduate student Yajing Li led a study to control the bonds between atoms in a single molecule, in this case a carbon-60 molecule, or buckyball. They found they could "detune" the vibrations between atoms in a molecule isolated in a nano antenna. Image courtesy Jeff Fitlow/Rice University.

The molecule in question is carbon-60, also known as the buckminsterfullerene and the buckyball, discovered at Rice in 1985. The scientists led by Rice physicists Yajing Li and Douglas Natelson found that it's possible to soften the bonds between atoms by applying a voltage and running an electric current through a single buckyball.

The researchers detailed their discovery this week in the online Proceedings of the National Academy of Sciences.

"This doesn't mean we're going to be able to arbitrarily dial around the strength of materials or anything like that," Natelson said. "This is a very specific case, and even here it was something of a surprise to see this going on.

"But in general, if we can manipulate the charge distribution on molecules, we can affect their vibrations. We can start thinking, in the future, about controlling things in a better way."

The effect appears when a buckyball attaches to a gold surface in the optical nano antenna used to measure the effects of an electric current on intermolecular bonds through a technique called Raman spectroscopy.

Natelson's group built the nano antenna a few years ago to trap small numbers of molecules in a nanoscale gap between gold electrodes. Once the molecules are in place, the researchers can chill them, heat them, blast them with energy from a laser or electric current and measure the effect through spectroscopy, which gathers information from the frequencies of light emitted by the object of interest.

With continuing refinement, the researchers found they could analyze molecular vibrations and the bonds between the atoms in the molecule. That ability led to this experiment, Natelson said.

Natelson compared the characteristic vibrational frequencies exhibited by the bonds to the way a guitar string vibrates at a specific frequency based on how tightly it's wound. Loosen the string and the vibration diminishes and the tone drops.

The nano antenna is able to detect the "tone" of detuned vibrations between atoms through surface-enhanced Raman spectroscopy (SERS), a technique that improves the readings from molecules when they're attached to a metal surface. Isolating a buckyball in the gap between the gold electrodes lets the researchers track vibrations through the optical response seen via SERS.

When a buckyball attaches to a gold surface, its internal bonds undergo a subtle shift as electrons at the junction rearrange themselves to find their lowest energetic states. The Rice experiment found the vibrations in all the bonds dropped ever so slightly in frequency to compensate.

"Think of these molecules as balls and springs," Natelson said. "The atoms are the balls and the bonds that hold them together are the springs. If I have a collection of balls and springs and I smack it, it would show certain vibrational modes.

"When we push current through the molecule, we see these vibrations turn on and start to shake," Natelson said. "But we found, surprisingly, that the vibrations in buckyballs get softer, and by a significant amount. It's as if the springs get floppier at high voltages in this particular system." The effect is reversible; turn off the juice and the buckyball goes back to normal, he said.

The researchers used a combination of experimentation and sophisticated theoretical calculations to disprove an early suspicion that the well-known vibrational Stark effect was responsible for the shift. The Stark effect is seen when molecules' spectral responses shift under the influence of an electric field. The Molecular Foundry, a Department of Energy User Facility at Lawrence Berkeley National Laboratory, collaborated on the calculations component.

Natelson's group had spied similar effects on oligophenylene vinylene molecules used in previous experiments, also prompting the buckyball experiments. "A few years ago we saw hints of vibrational energies moving around, but nothing this clean or this systematic. It does seem like C-60 is kind of special in terms of where it sits energetically," he said.

The discovery of buckyballs, which earned a Nobel Prize for two Rice professors, kick-started the nanotechnology revolution. "They've been studied very well and they're very chemically stable," Natelson said of the soccer-ball-shaped molecules. "We know how to put them on surfaces, what you can do to them and have them still be intact. This is all well understood." He noted other researchers are looking at similar effects through the molecular manipulation of graphene, the single-atomic-layer form of carbon.

"I don't want to make some grand claim that we've got a general method for tuning the molecular bonding in everything," Natelson said. "But if you want chemistry to happen in one spot, maybe you want to make that bond really weak, or at least make it weaker than it was.

"There's a long-sought goal by some in the chemistry community to gain precise control over where and when bonds break. They would like to specifically drive certain bonds, make sure certain bonds get excited, make sure certain ones break. We're offering ways to think about doing that."

Rice graduate student Yajing Li is lead author of the paper. Co-authors are Peter Doak of the Lawrence Berkeley Laboratory; Leeor Kronik, a professor in the Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth, Israel; and Molecular Foundry director Jeffrey Neaton, a professor of physics at the University of California, Berkeley, and a member of the Kavli Energy NanoSciences Institute at Berkeley. Natelson is a professor of physics and astronomy and of electrical and computer engineering at Rice.

The Robert A. Welch Foundation, the Department of Energy, the Israel Science Foundation and the Lise Meitner Center for Computational Chemistry supported the work. Computations were performed at the National Energy Research Scientific Computing Center.

-30-

Read the abstract at http://www.pnas.org/content/early/2014/01/09/1320210111.abstract

.


Related Links
Rice University
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CARBON WORLDS
Climate change: How does soil store CO2?
Munich, Germany (SPX) Jan 17, 2014
Global carbon dioxide (CO2) emissions continue to rise - in 2012 alone, 35.7 billion tons of this greenhouse gas entered the atmosphere*. Some of this CO2 is absorbed by the oceans, plants and soil. As such, they provide a significant reservoir of carbon, stemming the release of CO2. Scientists have now discovered how organic carbon is stored in soil. Basically, the carbon only binds to ce ... read more


CARBON WORLDS
NASA Seeks Partnership Opportunities For Commercial Lunar Landers

Chang'e-3 probe sets out on new missions

China's lunar probe observes stars, explores moon

China's moon rover performs first lunar probe

CARBON WORLDS
Mystery Mars rock reveals unexpected chemical composition

Mysterious stone 'rawled up' to Mars Rover Opportunity

Oppy Encounters A Surprise At Solander Point

Dutch researcher says Earth food plants able to grow on Mars

CARBON WORLDS
NASA Tests Orion Spacecraft Parachute Jettison over Arizona

New patent mapping system helps find innovation pathways

Working Together to Build Tomorrow's STEM Workforce

US Congress Rejects White House Cuts to Planetary Exploration

CARBON WORLDS
Official: China's space policy open to world

China launches communications satellite for Bolivia

China's moon rover continues lunar survey after photographing lander

China's Yutu "naps", awakens and explores

CARBON WORLDS
Cygnus Work Under Way, Normal Station Operations Continue

Spaceflight, Nanoracks Partnership Launch CubeSat Customers Towards Historic ISS Deployment

Orbital's cargo ship arrives at space station

Obama Administration Extends ISS Until at Least 2024

CARBON WORLDS
NASA Commercial Crew Partner SpaceX Tests Dragon Parachute System

NASA's Commercial Crew Partners Aim to Capitalize, Expand on 2013 Successes in 2014

Ariane Flight VA217; Ariane Flight VA216 and Soyuz Flight VS07

2014 set to be a very productive year for collaboration between Arianespace and Italy

CARBON WORLDS
First planet found around solar twin in star cluster

NASA's Kepler Provides Insights on Enigmatic Planets

Powerful Planet Finder Turns Its Eye to the Sky

New kind of planet or failed star? Astrophysicists discover category-defying celestial object

CARBON WORLDS
CCNY Team Models Sudden Thickening of Complex Fluids

Potential Future Data Storage at Domain Boundaries

What makes superalloys super - hierarchical microstructure of a superalloy

Quantum physics could make secure, single-use computer memories possible




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement