Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Researchers Discover The Cause Of Irradiation-Induced Instability In Materials Surfaces
by Staff Writers
Boston MA (SPX) Apr 18, 2011


The discovery, while interesting in its own right, may also help to solve a mysterious degradation problem in tungsten plasma-facing reactor walls in prototype fusion reactors.

A new discovery about the dynamic impact of individual energetic particles into a solid surface improves our ability to predict surface stability or instability of materials under irradiation over time.

The finding may lead to the design of improved structural materials for nuclear fission and fusion power plants, which must withstand constant irradiation over decades. It may also accelerate the advent of fusion power, which does not produce radioactivity.

Publishing in Nature Communications, Michael Aziz, Gene and Tracy Sykes Professor of Materials and Energy Technologies, and Michael Brenner, Glover Professor of Applied Mathematics and Applied Physics, both at the Harvard School of Engineering and Applied Sciences (SEAS), and colleagues developed a new rigorous mathematical theory that is "fed" the measured shape of the average crater resulting from the impact of an energetic particle.

The impacts, lasting a few trillionths of a second, are simulated using intensive computer calculations. The theory then "up-scales" the cumulative effect of individual energetic particle impacts to predict surface topography evolution over thousands of seconds or longer.

"Our results illustrate how large-scale computer simulations can be combined with rigorous mathematical analysis to yield precise predictions of new phenomena on length and timescales that would otherwise be computationally impossible," says Brenner.

The researchers were surprised to discover that stability/instability is not determined by the atoms that are blasted away, but instead by the atoms that are knocked around and re-settle nearby.

"Our discovery overturns a long-held paradigm about what causes surfaces to erupt into patterns under energetic particle bombardment. The blasting away of individual atoms from energetic particle impacts has long been thought to determine whether a surface is stable or unstable," says Aziz.

"The effect of atoms blasted away turns out to be so small that it is essentially irrelevant. The lion's share of the responsibility of what makes a surface stable or unstable under irradiation comes from the cumulative effect of the much more numerous atoms that are just knocked to a different place but not blasted away."

The team found that the cumulative effect of these displacements can be either ultra-smoothening, which may be useful for the surface treatment of surgical tools, or topographic pattern-forming instabilities, which can degrade materials. The outcome depends on the type of material, energetic particle, and irradiation conditions.

The discovery, while interesting in its own right, may also help to solve a mysterious degradation problem in tungsten plasma-facing reactor walls in prototype fusion reactors.

Tungsten is used for two reasons. First, it is inert to nuclear reactions that could arise from the bombardment by hydrogen and helium from the plasma. Additionally, "The material is so strongly bound that this bombardment does not lead to the blasting away of any tungsten atoms", says Aziz.

Yet, under some conditions the tungsten inexplicably becomes "foamy" or begins to degrade. Armed with insight from the new theory, the researchers considered the implications for foamy tungsten.

"Even under plasma conditions where no tungsten atoms are blasted away, they are indeed displaced to new positions," says Aziz. "We conjectured that the way the helium moves the tungsten atoms around is causing the instability. While more research will be needed to know for sure, we think we're finally in the position of being able to develop a predictive theory for tungsten by extending the one we have presented here for simpler materials."

Extending the study to more complex materials such as tungsten is an important future challenge, as it could lead to better design criteria for materials that must remain stable during exposure to irradiation, both for cleaner, safer fusion and for conventional fission reactors.

Aziz and his colleagues developed an experimental data set using ion beam irradiation of silicon because it is the simplest prototype material for such studies. Their theory was validated by detailed comparison of its predictions to their experimental results for surface ultra-smoothening, instabilities, and pattern formation in silicon.

"This could help solve a technical problem with nuclear fusion power, which holds promise for nuclear power without radioactivity" says Aziz.

Co-authors included Scott A. Norris, a former postdoctoral research fellow in SEAS and now on the Faculty at Southern Methodist University; Juha Samela, Larua Bukonte, Marie Backman, Djurabekova Flyura, Kai Nordlund, all at the Department of Physics and Helsinki Institute of Physics; and Charbel S. Madi, a Ph.D. student in SEAS.

.


Related Links
Harvard
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Debate over BPA ongoing in Europe
Paris (UPI) Apr 15, 2011
Industry groups say an upcoming European ban on bisphenol A in plastic baby bottles could lead to bans on use of the substance in other forms of packaging. The European Union has already banned substances such as phtalates, commonly used in toys, cosmetics and cars. Packaging industry groups have criticized the European Commission for its failure to follow the science-based advic ... read more


TECH SPACE
BRP To Contribute To Canadian Moon And Mars Exploration Programs

Naveen Jain Co-Founder And Chairman Of Moon Express

Project Morpheus To Begin Testing At NASA's Johnson Space Center

NASA Announces Winners Of 18th Annual Great Moonbuggy Race

TECH SPACE
Mars Rover's 'Gagarin' Moment Applauded Exploration

Mars Flight Possible After 2035

Several Drives This Week Put Opportunity Over 17-Mile Mark

Next Mars Rover Nears Completion

TECH SPACE
NASA Awards Next Set Of Commercial Crew Development Agreements

LockMart Commends Congressional Action On NASA Spacecraft

NASA spared cuts in US spending bill passage

NASA mission control named for Chris Kraft

TECH SPACE
Asia's star ever brighter in space

What Future for Chang'e-2

China setting up new rocket production base

China's Tiangong-1 To Be Launched By Modified Long March II-F Rocket

TECH SPACE
Roberto Vittori's DAMA Mission To ISS

Northrop Grumman To Test Heat Management System On ISS

The MELFI Shuffle: Contingency Planning For Preserving Samples

Space Debris No Threat To ISS

TECH SPACE
India Starts Countdown For Launch Of Three Satellites

Kazakh Space Launch Project Delayed Until 2017

Putin Urges Ukraine To Join New Russian Space Center Project

Arianespace to launch ASTRA 2E Satellite

TECH SPACE
Titan-Like Exoplanets

A New Way To Find Planets

Telescope Ferrets Out Planet-Hunting Targets

White Dwarfs Could Be Fertile Ground For Other Earths

TECH SPACE
Researchers Discover The Cause Of Irradiation-Induced Instability In Materials Surfaces

ITT's Commercial Imaging Payload Passes Major Milestone

Eco-Friendly Treatment For Blue Jeans Offers Alternative To Controversial Sandblasting

Japan's TEPCO pours radiation-absorbing mineral in sea




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement