Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
Researchers Create New High-Performance Fiber
by Staff Writers
Evanston, IL (SPX) Dec 06, 2010


The result is a material that is tougher than Kevlar - meaning it has a higher ability to absorb energy without breaking. But Kevlar is still stronger - meaning it has a higher resistance to failure. Next, researchers hope to continue to study how to engineer the interactions between carbon nanotube bundles and between the nanotubes within the bundle itself.

Researchers at Northwestern University have nanoengineered a new kind of fiber that could be tougher than Kevlar. Working in a multidisciplinary team that includes groups from other universities and the MER Corporation, Horacio Espinosa, James N. and Nancy J. Farley Professor in Manufacturing and Entrepreneurship at the McCormick School of Engineering and Applied Science, and his group have created a high performance fiber from carbon nanotubes and a polymer that is remarkably tough, strong, and resistant to failure.

Using state-of-the-art in-situ electron microscopy testing methods, the group was able to test and examine the fibers at many different scales - from the nano scale up to the macro scale - which helped them understand just exactly how tiny interactions affect the material's performance. Their results were recently published in the journal ACS Nano.

"We want to create new-generation fibers that exhibit both superior strength and toughness," said Espinosa said. "A big issue in engineering fibers is that they are either strong or ductile - we want a fiber that is both. The fibers we fabricated show very high ductility and a very high toughness.

"They can absorb and dissipate large amounts of energy before failure. We also observed that the strength of the material stays very, very high, which has not been shown before. These fibers can be used for a wide variety of defense and aerospace applications."

The project is part of the Department of Defense's Multidisciplinary University Research Initiative (MURI) program, which supports research by teams of investigators that intersect more than one traditional science and engineering discipline.

Espinosa and his collaborators received $7.5 million from the U.S. Army Research Office for the study of disruptive fibers, which could be used in bulletproof vests, parachutes, or composite materials used in vehicles, airplanes and satellites.

To create the new fiber, researchers began with carbon nanotubes -cylindrical-shaped carbon molecules, which individually have one of the highest strengths of any material in nature. When you bundle nanotubes together, however, they lose their strength - the tubes start to laterally slip between each other.

Working with the MER Corporation and using the corporation's CVD reactor, the team added a polymer to the nanotubes to bind them together, and then spun the resulting material into yarns. Then they tested the strength and failure rates of the material using in-situ SEM testing, which uses a powerful microscope to observe the deformation of materials under a scanning electron beam.

This technology, which has only been available in the past few years, allows researchers to have extremely high resolution images of materials as they deform and fail and allows researchers to study materials on several different scales. They can examine individual bundles of nanotubes and the fiber as a whole.

"We learned on multiple scales how this material functions," said Tobin Filleter, a postdoctoral researcher in Espinosa's group. "We're going to need to understand how molecules function at these nanometer scales to engineer stronger and tougher fibers in the future."

The result is a material that is tougher than Kevlar - meaning it has a higher ability to absorb energy without breaking. But Kevlar is still stronger - meaning it has a higher resistance to failure. Next, researchers hope to continue to study how to engineer the interactions between carbon nanotube bundles and between the nanotubes within the bundle itself.

"Carbon nanotubes, the nanoscale building blocks of the developed yarns, are still 50 times stronger than the material we created," said Mohammad Naraghi, a postdoctoral researcher in Espinosa's group. "If we can better engineer the interactions between bundles, we can make the material stronger."

The group is currently looking at techniques - like covalently crosslinking tubes within bundles using high-energy electron radiation - to help better engineer those interactions.

Filleter and Naraghi said this work wouldn't have been possible without the interdisciplinary team that includes merging academia with industry.

"To work in an environment where we can trade information back and forth is a unique opportunity that will push the technology farther," Naraghi said. "MER has given us a unique raw material and a commercial perspective on the project. In turn, we provide the fundamental scientific understanding."

.


Related Links
Northwestern University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Blacker Than Black
Greenbelt MD (SPX) Dec 03, 2010
Black is black, right? Not so, according to a team of NASA engineers now developing a blacker-than pitch material that will help scientists gather hard-to-obtain scientific measurements or observe currently unseen astronomical objects, like Earth-sized planets in orbit around other stars. The nanotech-based material now being developed by a team of 10 technologists at the NASA Goddard Spac ... read more


NANO TECH
Robotic Excavations Could Help Get Helium 3 From Moon To Earth

A Softer Landing on the Moon

Neptec Wins Canadian Space Agency Contract To Develop A New Generation Of Lunar Rovers

Mission to far side of moon proposed

NANO TECH
Drilling For The Future Of Science

Opportunity Imaging Small Craters On Way To Endeavour

Opportunity Making Progress To Endeavour Crater

Spain Supplies Weather Station For Next Mars Rover

NANO TECH
SwRI Researchers Continue Starfighters Suborbital Space Flight Training

X-37B Orbital Test Vehicle Completes First Flight

Website Hosts Space Transcripts

Roscosmos And NASA To Seal Deal On Joint Projects

NANO TECH
China Builds Theme Park In Spaceport

Tiangong Space Station Plans Progessing

China-Made Satellite Keeps Remote Areas In Venezuela Connected

Optis Software To Optimize Chinese Satellite Design

NANO TECH
NASA Seeks Nonprofit To Manage ISS National Lab Research

Expedition 25 Returns Home

Crews approved for space station mission

Soyuz crew land safely on earth from ISS

NANO TECH
ISRO Hands Two Contracts To Arianespace

US company readies first space capsule launch

Kazakh Space Agency Seeks Extra Funding For New Baikonur Launch Pad

Aerojet Propulsion Raises Japan's First Quasi-Zenith Satellite MICHIBIKI

NANO TECH
Super-Earth Has An Atmosphere, But Is It Steamy Or Gassy

First Super-Earth Atmosphere Analyzed

Super Earth Could Be Steaming Hot Or Full Of Gas

500th 'extrasolar' planet discovered

NANO TECH
Video games get kids to eat more veg, fruit: study

Cell phone exposure linked to bad behavior in kids: study

Next-Gen Earth Imaging Satellite Advances To Critical Design Review Phase

Google unveils new smartphone, the Nexus S




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement