Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Researcher devises method to untangle, analyze 'controlled chaos'
by Staff Writers
Bloomington IN (SPX) Jul 14, 2015


A "percolation diagram" of the flight patterns of several major US carriers. Airports in red and their connections indicate a "structural core" that protects against abrupt breakdowns in the system. Image courtesy Filippo Radicchi. For a larger version of this image please go here.

A researcher at Indiana University has developed a new mathematical framework to more effectively analyze "controlled chaos," or how interactions among highly complex systems affect their operation and vulnerability. The new method could potentially be used to improve the resilience of complex critical systems, such as air traffic control networks and power grids, or slow the spread of threats across large networks, such as disease outbreaks.

"By providing reliable results in a rapid manner, these equations allow for the creation of algorithms that optimize the resilience of real interdependent networks," said the study's author, Filippo Radicchi, whose work appears in the journal Nature Physics. "They may also be helpful in designing complex systems that are more robust, or more easily recoverable," he added.

Radicchi is an assistant professor in the School of Informatics and Computing and a member of the Center for Complex Networks and Systems Research. His equations work by providing a new method to "untangle" multiple complex systems; pulling apart each network, or "graph," for individual analysis; and then reconstructing an overall picture.

A "graph" describes the myriad points and connection lines that comprise a complex network. In an air transportation network, for example, an airport might represent a single point; an airplane's flight path, the connections between points.

"In the real world, networks do not exist in isolation; they are always interacting with other networks," Radicchi said. "By unraveling multiple graphs, we're able to analyze each in isolation, providing a more complete picture of their interdependence and interaction."

The key to the equations' power is twofold. First, they are not dependent on the use of large-scale simulations, which are costly and time-consuming to run. Secondly, they are able to quickly and accurately measure "percolation" in a system, a term that describes the amount of disruption caused by small breakdowns in a large system.

"If you're traveling between cities by plane and 10 percent of the airports worldwide suddenly stop operating for some reason, percolation theory can help us calculate how many airports you can still use to reach your target city," Radicchi said.

A smooth percolation transition, as revealed though the equations, indicates that a system will stop functioning gradually as the number of local failures rise. An abrupt percolation transition reveals a system more likely to stop functioning suddenly after reaching a certain number of local failures.

"At that point," Radicchi said, "a system will exhibit 'catastrophic behavior,' from which it is very difficult to recover."

For an infamous example of an unstable infrastructure, Radicchi points to a massive blackout in his native country of Italy in 2003, in which the entire nation's power grid failed within a matter of minutes. The problem was traced back to control of the nation's power generators, which was dependent upon a telecommunications network that itself could not properly function without electricity.

"When the power went out, telecommunications routers also failed, causing further chaos and knocking out the Internet communications network too," he said. "These are the sorts of situations we need to be able to detect before they occur, not after it's too late."

In terms of infrastructure, Radicchi said the same methods used to detect vulnerabilities in a transportation network could also help create plans to reduce construction costs or shorten commute times. Or they could be applied to better understand other complex systems that remain surprisingly resistant to breakdown, such as the human body, the brain and social networks.

"We may be able to further optimize these systems too," he added. "For example, enhancing the spread of new knowledge and ideas."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Indiana University
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
New method of quantum entanglement packs vastly more data in a photon
Los Angeles CA (SPX) Jul 10, 2015
A team of researchers led by UCLA electrical engineers has demonstrated a new way to harness light particles, or photons, that are connected to each other and act in unison no matter how far apart they are - a phenomenon known as quantum entanglement. In previous studies, photons have typically been entangled by one dimension of their quantum properties - usually the direction of their polarizat ... read more


TIME AND SPACE
Russia to Land Space Vessel on Moon's Polar Region in 2019

Moon engulfed in permanent, lopsided dust cloud

Crashing comets may explain mysterious lunar swirls

Google Lunar X-Prize meets Yoda

TIME AND SPACE
Opportunity Rover's 7th Mars Winter to Include New Study Area

Opportunity Gets Back to Work

NASA wants to send microbes to Mars to prepare for human habitation

Could This Become the First Mars Airplane

TIME AND SPACE
US selects four astronauts for commercial flight

Docking Adapter Sets Stage for Commercial Crew Crew

Targeted LEDs could provide efficient lighting for plants grown in space

NASA Gears Up to Test Orion's Powerhouse

TIME AND SPACE
Chinese earth station is for exclusively scientific and civilian purposes

Cooperation in satellite technology put Belgium, China to forefront

China set to bolster space, polar security

China's super "eye" to speed up space rendezvous

TIME AND SPACE
'Jedi' astronauts say 'no fear' as they gear for ISS trip

Relief as Russian cargo ship docks at space station

Loss of SpaceX Cargo Resupply Mission No Threat to ISS Crew Security

Russia launches Soyuz Progress with supplies for ISS

TIME AND SPACE
India to launch its heaviest commercial mission to date

Final payload integration begins for next Ariane 5 launch

Licensed commercial spaceport to be built in Houston, Texas

More Fidelity for SpaceX In-Flight Abort Reduces Risk

TIME AND SPACE
Bricks to build an Earth found in every planetary system

Observing the birth of a planet

Precise ages of largest number of stars hosting planets ever measured

Can Planets Be Rejuvenated Around Dead Stars?

TIME AND SPACE
Advanced composites may borrow designs from deep-sea shrimp

Nonmagnetic elements form unique magnet

Lower cost ultrasound degassing now possible in processing aluminum

New computer program may fix billion-dollar bit rot problem




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.