Subscribe free to our newsletters via your
. 24/7 Space News .

Research paints new picture of 'dinobird' feathers
by Staff Writers
Menlo Park CA (SPX) Jun 17, 2013

The is the fossilized feather long considered to be the "holotype" specimen of Archaeopteryx. Credit: Brad Plummer/SLAC.

The first complete chemical analysis of feathers from Archaeopteryx, a famous fossil linking dinosaurs and birds, reveals that the feathers were patterned-light in color, with a dark edge and tip-rather than all black, as previously thought.

The findings came from X-ray experiments at the Department of Energy's (DOE) SLAC National Accelerator Laboratory, where scientists were able to find chemical traces of the original dinobird and its pigments in the rock that entombed it 150 million years ago.

"This is a big leap forward in our understanding of the evolution of plumage," said Phillip Manning, a paleontologist at the University of Manchester and lead author of the report in the June 13 issue of the Journal of Analytical Atomic Spectrometry.

Only 11 specimens of Archaeopteryx have been found, the first one consisting of a single feather. Until a few years ago, researchers thought all the bones and tissues of the original animal would have been replaced by minerals during fossilization, leaving no chemical traces behind.

But two recently developed methods have turned up more information about the dinobird and its plumage.

The first is the discovery of melanosomes-microscopic 'paint pot' structures containing pigment-in fossils. A team led by researchers at Brown University announced last year that an analysis of melanosomes in the Archaeopteryx feather specimen showed that the feather was black. They identified the feather as a covert-a type of feather that covers the primary and secondary wing feathers-and said its heavy pigmentation may have strengthened it against the wear and tear of flight, as it does in modern birds.

However, that study examined melanosomes from just a few locations in the fossilized feather, said SLAC's Uwe Bergmann. "It's actually quite a beautiful paper," he said, "but they took just tiny samples of the feather, not the whole thing."

The second is a method Bergmann, Manning and Roy Wogelius of the University of Manchester developed for rapidly scanning entire fossils and analyzing their chemistry with an X-ray beam at SLAC's Stanford Synchrotron Radiation Lightsource (SSRL).

Over the past three years, they led a team that used this method to discover chemicals left by the dinobird's bones and feathers in the surrounding rock, as well as pigments from the fossilized feathers of two of the first known birds. This allowed them to recreate the plumage pattern of a bird that lived more than 120 million years ago.

In the latest study, the team scanned the entire fossil of the first Archaeopteryx feather with the SSRL X-ray beam. They found trace metals associated with pigments and organic sulfur compounds that could only have come from the animal itself. The fact that these compounds have been preserved in the fossil for 150 million years is extraordinary, Manning said.

Together these chemical traces show that the feather was light in color, with areas of darker pigmentation along one edge and on the tip. Scans of a second fossilized Archaeopteryx, known as the Berlin counterpart, revealed that its covert feathers had the same pigmentation pattern, Manning said.

He said the results show that the chemical analysis provided by synchrotron X-ray sources such as SSRL is crucial for understanding these ancient fossils, including plumage patterns that play an important role in the courtship, reproduction and evolution of birds and contain clues to their health, eating habits and environment.

The research team included Dimosthenis Sokaras and Roberto Alonso of SLAC and scientists from the University of Manchester in England, the Black Hills Institute of Geological Research in South Dakota and the Museum fur Naturkunde in Berlin, which provided the Archaeopteryx fossils for analysis.


Related Links
DOE/SLAC National Accelerator Laboratory
Explore The Early Earth at

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Fossil kangaroo teeth reveal mosaic of Pliocene ecosystems in Queensland
Brisbane, Australia (SPX) Jun 17, 2013
The teeth of a kangaroo and other extinct marsupials reveal that southeastern Queensland 2.5-5-million-years ago was a mosaic of tropical forests, wetlands and grasslands and much less arid than previously thought. The chemical analysis of tooth enamel that suggests this diverse prehistoric habitat is published June 12 in the open access journal PLOS ONE by Shaena Montanari from the Americ ... read more

LADEE Arrives at Wallops for Moon Mission

NASA's GRAIL Mission Solves Mystery of Moon's Surface Gravity

Moon dust samples missing for 40 years found in Calif. warehouse

Unusual minerals in moon craters may have been delivered from space

Mars Water-Ice Clouds Are Key to Odd Thermal Rhythm

Marks on Martian Dunes May Reveal Tracks of Dry-Ice Sleds

UH Astrobiologists Find Martian Clay Contains Chemical Implicated in the Origin of Life

Mars Rover Opportunity Trekking Toward More Layers

The Body Electric: Researchers Move Closer to Low-Cost, Implantable Electronics

TED conference sets stage for a week of bright ideas

NASA's Orion Spacecraft Proves Sound Under Pressure

Expert slams Congress over ban on U.S.-China space cooperation

China astronauts enter space module

China to send second woman into space: officials

Tiangong-1 ready for docking and entry

Shenzhou-10 mission to teach students in orbit

Europe's space truck docks with ISS

Russian cargo supply craft separates from International Space Station

Russian Space Freighter to Depart From Orbital Station

Star Canadian spaceman Chris Hadfield retiring

Mitsubishi Heavy and Arianespace conclude MOU on commercial launches

Sea Launch IS-27 FROB Report Complete

Europe launches record cargo for space station

New chief urges Ariane 5 modification for big satellites

Sunny Super-Earth?

Kepler Stars and Planets are Bigger than Previously Thought

Astronomers gear up to discover Earth-like planets

Stars Don't Obliterate Their Planets (Very Often)

NSBRI Industry Forum Launches Grant Opportunity To Drive Spaceflight Product Development

Filmmaking magic with polymers

Chilean, U.S. firms join effort to expand e-waste recycling

Space Debris - One Solution

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement