Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
Research gives crystal clear temperature readings from toughest environments
by Staff Writers
Warwick UK (SPX) Sep 07, 2011


Professor Pam Thomas.

Researchers at the University of Warwick and Oxford University have developed a form of crystal that can deliver highly accurate temperature readings, down to individual milli-kelvins, over a very broad range of temperatures: -120 to +680 degrees centigrade.

The researchers used a "birefringent" crystal which splits light passing through it into two separate rays. Research has already shown that the size of the effect will increase or decrease in proportion to the temperature of the crystal. Therefore, in theory, you could calibrate such crystals to be highly accurate temperature gauges.

However, the use of birefringence in this way has significant problems in practice. This temperature measuring ability of highly birefringent crystals is badly compromised by changes in the thickness and orientation of the crystal.

This adds expense to the manufacture and calibration of such crystals and makes them almost unusable in situations where, for example, vibration could alter the orientation of the crystal.

However the Warwick and Oxford researchers have developed a reproducible a and low-cost method of modifying the properties of crystalline lithium tantalate so that its birefringence is virtually independent of the crystal's thickness and position making it resistant to vibration and cheaper to manufacture.

In fact, they have made the birefringence almost zero in magnitude in all directions (the material is close to being optically isotropic just like ordinary glass).

However, the slightest temperature change induces a rapid increase in birefringence in these materials, making this a reliable, robust and very sensitive method for measuring temperature.

The inventors have named their device a Zero-Birefringence Optical Temperature Sensor ( (Z-BotS) and are currently seeking follow-on funding to develop the device from the bench-top proof-of-concept to a miniaturized commercially-viable package.

Professor Pam Thomas of the University of Warwick said, "This advance, which has come out of research funded by EPSRC, allows us to create a new generation of robust reliable birefringent crystal based temperature sensing equipment which will be particularly valuable in electromagnetic, radio frequency and high voltage environments, where other types of sensor are subject to large errors due to interference. Examples are temperature measurement within the vicinity of MRI scanners in hospitals, industrial microwave dryers and the human body."

Professor Mike Glazer of the University of Oxford said, "This opens new possibilities for remote temperature sensing of challenging environments. As the birefringence changes detection in these crystals can actually be operated remotely as only the crystal itself needs to be in the environment. All the other components: light source, measurement and processing electronics can be situated remotely."

This invention is now the subject of a patent application, and the researchers are working with Isis Innovation and Warwick Ventures to explore licensing opportunities for the this new technology.

.


Related Links
University of Warwick
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
The quantum tunneling effect leads electron transport in porphyrins
Madrid, Spain (SPX) Sep 06, 2011
Porphyrins are organic molecules that appear in the central region of macromolecules such as chlorophyll and hemoglobin, and have a metal atom at their center that determines their specific function. The importance of these molecules in the field of molecular electronics lies in their "ease of transfer electrons from one region to another" explains the responsible of the work at the Nanoma ... read more


CHIP TECH
NASA Spacecraft Images Offer Sharper Views of Apollo Landing Sites

Moon Mission Ready to Fly

NASA orbiter shows moon surface in stunning clarity

Armstrong relives historic Moon landing

CHIP TECH
Microbe Risk When Rover Wheels Hit Martian Dirt

Finishing Work at Tinsdale 2

Rare martian lake delta spotted by Mars Express

Opportunity Begins Study of Martian Crater

CHIP TECH
US astronaut shortage poses risks: study

Louisiana Tech and NASA partner to conduct zero-gravity experiments

Space Agencies Meet To Discuss A Global Exploration Roadmap

Space chief warns Israel losing its edge

CHIP TECH
Tiangong 1 might be launched in late September

Chang'e-2 moon orbiter travels around L2 in outer space

China State media says Tiangong 1 to launch in early Sept

Time Limits for Tiangong

CHIP TECH
NASA mulls 'what-ifs' of unmanned space station

Wyle Selects Paragon Software For Disaster Recovery Solutions For ISS

Progress 44 accident and its consequences for Space Station

Canadian Robot Repairs Components on the Space Station

CHIP TECH
Kazakhstan won't ban Russian rocket launches from Baikonur

SwRI selected as payload integrator for three NASA suborbital flight opportunities research providers

Ariane 5's upper payload completes its integration at the Spaceport

Third ATV begins its preparations for launch on Ariane 5

CHIP TECH
The diamond planet

Greenhouse Effect Could Extend Habitable Zone

A Planet Made of Diamond

Astronomers Find Ice and Possibly Methane on Snow White

CHIP TECH
Attempt to revive silent satellite planned

Half of world's PCs use pirated software: report

Japan firm creates radiation-detecting plastic

ViaSat Wins Contracts from Boeing for Ground Based Beam Forming System for Mexican Satellite System




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement