Subscribe free to our newsletters via your
. 24/7 Space News .




SHAKE AND BLOW
Research aims to settle debate over origin of Yellowstone volcano
by Staff Writers
Narragansett RI (SPX) Apr 18, 2013


The next step in Kincaid's research is to conduct a similar analysis of the geologic formations in the region around the Tonga subduction zone and the Samoan Islands in the South Pacific, another area where some scientists dispute the role of mantle plumes.

A debate among scientists about the geologic formation of the supervolcano encompassing the region around Yellowstone National Park has taken a major step forward, thanks to new evidence provided by a team of international researchers led by University of Rhode Island Professor Christopher Kincaid.

In a publication appearing in last week's edition of Nature Geoscience, the URI team demonstrated that both sides of the debate may be right.

Using a state-of-the-art plate tectonic laboratory model, they showed that volcanism in the Yellowstone area was caused by severely deformed and defunct pieces of a former mantle plume. They further concluded that the plume was affected by circulation currents driven by the movement of tectonic plates at the Cascades subduction zone.

Mantle plumes are hot buoyant upwellings of magma inside the Earth. Subduction zones are regions where dense oceanic tectonic plates dive beneath buoyant continental plates. The origins of the Yellowstone supervolcano have been argued for years, with sides disagreeing about the role of mantle plumes.

According to Kincaid, the simple view of mantle plumes is that they have a head and a tail, where the head rises to the surface, producing immense magma structures and the trailing tail interacts with the drifting surface plates to create a chain of smaller volcanoes of progressively younger age.

But Yellowstone doesn't fit this typical mold. Among its oddities, its eastward trail of smaller volcanoes called the Snake River Plain has a mirror-image volcanic chain, the High Lava Plain, that extends to the west. As a result, detractors say the two opposite trails of volcanoes and the curious north-south offset prove the plume model simply cannot work for this area, and that a plates-only model must be at work.

To examine these competing hypotheses, Kincaid, former graduate student Kelsey Druken, and colleagues at the Australian National University built a laboratory model of the Earth's interior using corn syrup to simulate fluid-like motion of Earth's mantle. The corn syrup has properties that allow researchers to examine complex time changing, three-dimensional motions caused by the collisions of tectonic plates at subduction zones and their effect on unsuspecting buoyant plumes.

By using the model to simulate a mantle plume in the Yellowstone region, the researchers found that it reproduced the characteristically odd patterns in volcanism that are recorded in the rocks of the Pacific Northwest.

"Our model shows that a simple view of mantle plumes is not appropriate when they rise near subduction zones, and that these features get ripped apart in a way that seems to match the patterns in magma output in the northwestern U.S. over the past 20 million years," said Kincaid, a professor of geological oceanography at the URI Graduate School of Oceanography.

"The sinking plate produces a flow field that dominates the interaction with the plume, making the plume passive in many ways and trapping much of the magma producing energy well below the surface. What you see at the surface doesn't look like what you'd expect from the simple models."

The next step in Kincaid's research is to conduct a similar analysis of the geologic formations in the region around the Tonga subduction zone and the Samoan Islands in the South Pacific, another area where some scientists dispute the role of mantle plumes.

According to Kincaid, "A goal of geological oceanography is to understand the relationship between Earth's convecting interior and our oceans over the entire spectrum of geologic time. This feeds directly into the very pressing need for understanding where Earth's ocean-climate system is headed, which clearly hinges on our understanding of how it has worked in past."

.


Related Links
University of Rhode Island
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SHAKE AND BLOW
NASA Flies Dragon Eye Unmanned Aircraft Into Volcanic Plume
Greenbelt MD (SPX) Apr 10, 2013
NASA Earth science researchers last month traveled to Turrialba Volcano, near San Jose, Costa Rica, to fly a Dragon Eye unmanned aerial vehicle (UAV) - a small electric aircraft equipped with cameras and sensors - into the volcano's sulfur dioxide plume and over its summit crater, to study Turrialba's chemical environment. The project is designed to improve the remote-sensing capability of sat ... read more


SHAKE AND BLOW
Characterizing The Lunar Radiation Environment

Russia rekindles Moon exploration program, intends setting up first human outposts there

Pre-existing mineralogy may survive lunar impacts

Lunar cycle determines hunting behaviour of nocturnal gulls

SHAKE AND BLOW
Accurate pointing by Curiosity

NASA Mars Orbiter Images May Show 1971 Soviet Lander

Opportunity is in position for solar conjunction at 'Cape York' on the rim of Endeavour Crater

NASA spacecraft may have spotted pieces of Soviet spacecraft on Mars

SHAKE AND BLOW
Testing Spacesuits in Antarctica, part 1

Obama's budget would boost science, health

Underwater for outer space

NASA Celebrates Four Decades of Plucky Pioneer 11

SHAKE AND BLOW
Shenzhou's Shadow Crew

Shenzhou 10 sent to launch site

China's Next Women Astronauts

Shenzhou 10 - Next Stop: Jiuquan

SHAKE AND BLOW
UH Engineering Researcher's Theories to be Tested Aboard ISS

Unmanned Russian space freighter leaves space station toward fiery end

Europe sets June 5 for launch of space freighter

Spooky action at a distance aboard the ISS

SHAKE AND BLOW
Launch pad problem scrubs launch of Antares rocket for NASA

ILS Proton Launches Anik G1 for Telesat

Ukraine aims to accelerate space industry development

Payload integration is underway for Vega's second mission from the Spaceport

SHAKE AND BLOW
Astronomers find most Earth-like planets yet

Can One Buy the Right to Name a Planet?

Retired Star Found With Planets And Debris Disc

The Great Exoplanet Debate

SHAKE AND BLOW
Softening steel problem expands computer model applications

New material gets itself into shape

For the very first time, two spacecraft will fly in formation with millimeter precision

High pressure gold nanocrystal structure revealed




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement