Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
Rensselaer engineers 'cook' promising new heat-harvesting nanomaterials in microwave oven
by Staff Writers
Troy NY (SPX) Sep 30, 2011


Engineering researchers at Rensselaer Polytechnic Institute have developed new thermoelectric nanomaterials, pictured above, that could lead to techniques for better capturing and putting this waste heat to work. The key ingredients for making marble-sized pellets of the new material are aluminum and a common, everyday microwave oven. Credit: Rensselaer/Ramanath.

Waste heat is a byproduct of nearly all electrical devices and industrial processes, from driving a car to flying an aircraft or operating a power plant. Engineering researchers at Rensselaer Polytechnic Institute have developed new nanomaterials that could lead to techniques for better capturing and putting this waste heat to work.

The key ingredients for making marble-sized pellets of the new material are aluminum and a common, everyday microwave oven.

Harvesting electricity from waste heat requires a material that is good at conducting electricity but poor at conducting heat. One of the most promising candidates for this job is zinc oxide, a nontoxic, inexpensive material with a high melting point.

While nanoengineering techniques exist for boosting the electrical conductivity of zinc oxide, the material's high thermal conductivity is a roadblock to its effectiveness in collecting and converting waste heat. Because thermal and electrical conductivity are related properties, it's very difficult to decrease one without also diminishing the other.

However, a team of researchers led by Ganpati Ramanath, professor in the Department of Materials Science and Engineering at Rensselaer, in collaboration with the University of Wollongong, Australia, have demonstrated a new way to decrease zinc oxide's thermal conductivity without reducing its electrical conductivity.

The innovation involves adding minute amounts of aluminum to zinc oxide, and processing the materials in a microwave oven. The process is adapted from a technique invented at Rensselaer by Ramanath, graduate student Rutvik Mehta, and Theo Borca-Tasciuc, associate professor in the Department of Mechanical, Aerospace, and Nuclear Engineering (MANE).

This work could open the door to new technologies for harvesting waste heat and creating highly energy efficient cars, aircraft, power plants, and other systems.

"Harvesting waste heat is a very attractive proposition, since we can convert the heat into electricity and use it to power a device-like in a car or a jet-that is creating the heat in the first place. This would lead to greater efficiency in nearly everything we do and, ultimately, reduce our dependence on fossil fuels," Ramanath said.

"We are the first to demonstrate such favorable thermoelectric properties in bulk-sized high-temperature materials, and we feel that our discovery will pave the way to new power harvesting devices from waste heat."

Results of the study are detailed in the paper "Al-Doped Zinc Oxide Nanocomposites with Enhanced Thermoelectric Properties," published recently by the journal Nano Letters. View the paper online.

To create the new nanomaterial, researchers added minute quantities of aluminum to shape-controlled zinc oxide nanocrystals, and heated them in a $40 microwave oven. Ramanath's team is able to produce several grams of the nanomaterial in a matter of few minutes, which is enough to make a device measuring a few centimeters long. The process is less expensive and more scalable than conventional methods and is environmentally friendly, Ramanath said.

Unlike many nanomaterials that are fabricated directly onto a substrate or surface, this new microwave method can produce pellets of nanomaterials that can be applied to different surfaces. These attributes, together with low thermal conductivity and high electrical conductivity, are highly suitable for heat harvesting applications.

"Our discovery could be key to overcoming major fundamental challenges related to working with thermoelectric materials," said project collaborator Borca-Tasciuc. "Moreover, our process is amenable to scaling for large-scale production. It's really amazing that a few atoms of aluminum can conspire to give us thermoelectric properties we're interested in."

This work was a collaborative effort between Ramanath and Shi Xue Dou, a professor at the Institute for Superconducting and Electronic Materials at the University of Wollogong, Australia. Wollongong graduate student Priyanka Jood carried out the work together with Rensselaer graduate students Rutvik Mehta and Yanliang Zhang during Jood's one-year visit to Rensselaer.

Co-authors of the paper are Richard W. Siegel, the Robert W. Hunt Professor of Materials Science and Engineering; along with professors Xiaolin Wang and Germanas Peleckis at the University of Wollongong.

.


Related Links
Rensselaer Polytechnic Institute
Faculty Home Page - Ramanath
"Nanosculpture" Could Enable New Types of Heat Pumps and Energy Converters
Inexpensive "Nanoglue" Can Bond Nearly Anything Together
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Hydrogen released to fuel cell more quickly when stored in metal nanoparticles
Delft, Germany (SPX) Sep 30, 2011
Researchers from TU Delft and VU University Amsterdam in the Netherlands have demonstrated that the size of a metal alloy nanoparticle influences the speed with which hydrogen gas is released when stored in a metal hydride. The smaller the size of the nanoparticle, the greater the speed at which the hydrogen gas makes its way to the fuel cell. The researchers publish their findings in the ... read more


NANO TECH
NASA Partners Uncover New Hypothesis On Crater Debris

China to launch moon-landing probe around 2013

United Launch Alliance Launches GRAIL Spacecrafts To Moon

NASA launches twin spacecraft to study Moon's core

NANO TECH
SpaceX says 'reusable rocket' could help colonize Mars

Help NASA Find Life On Mars With MAPPER

Drilling into Arctic Ice

Lockheed Martin Completes Primary Structure of NASA's MAVEN Spacecraft

NANO TECH
Not Because It Is Easy

World's First DNA Astronauts to Launch Into Space

Rohrabacher Demands Release of NASA's Recent On-Orbit Fuel Depot Analysis

OSU partners with NASA

NANO TECH
Civilians given chance to reach for the stars

Tiangong-1 Forms Cornerstone Of China's Space Odyssey

"Heavenly Palace" China's dream home in space

Chief designer explains Chinese way of mastering space docking technology

NANO TECH
Private US capsule not to dock with ISS

Crew safely returns to Earth after crash

Russia postpones next manned launch to ISS

Russia announces launch of 2 spacecraft in Oct-Nov

NANO TECH
Sea Launch resumes operations after 2-year break

Ariane 5 marks fifth launch for 2011

Countdown to first Soyuz launch at Kourou under way

Ariane rocket launches satellites after strike delay

NANO TECH
Doubts Over Fomalhaut b

Earth's Trapped Gas Fed the Early Atmosphere

From the Comfort of Home, Web Users May Have Found New Planets

Rocky Planets Could Have Been Born as Gas Giants

NANO TECH
China cracks down on fake iPhones: report

RIM says committed to PlayBook amid price cuts

Orbiting ORS-1 Satellite System Operating Successfully

Chemistry team produces a game-changing catalyst




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement