Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Reluctant electrons enable 'extraordinarily strong' negative refraction
by Staff Writers
Boston MA (SPX) Aug 09, 2012


The experimental setup in Donhee Ham's lab shown here is used to test the new metamaterials, which are fabricated on tiny chips. The metamaterials themselves are inside the probing chamber at the bottom right. Imaged through the black microscope, they appear on the screen at the top of this image. Credit: Photo by Eliza Grinnell, Harvard SEAS Communications.

In a vacuum, light travels so fast that it would circle the Earth more than seven times within the blink of an eye. When light propagates through matter, however, it slows by a factor typically less than 5. This factor, called the refractive index, is positive in naturally occurring materials, and it causes light to bend in a particular direction when it shines on, for example, water or glass.

Over the past two decades, scientists have managed to create artificial materials whose refractive indices are negative; these negative-index metamaterials defy normal experience by bending light in the "wrong" direction.

Due to their unusual ability to manipulate electromagnetic waves and their potential to be harnessed for technology (that might, for example, cloak objects from view), negative-index metamaterials have been celebrated by scientists and engineers alike.

Researchers at the Harvard School of Engineering and Applied Sciences (SEAS), collaborating with the Weizmann Institute of Science in Israel, have now demonstrated a drastically new way of achieving negative refraction in a metamaterial.

The advance, reported in the August 2 issue of Nature, results in an "extraordinarily strong" negative refractive index as large as -700, more than a hundred times larger than most previously reported.

"This work may bring the science and technology of negative refraction into an astoundingly miniaturized scale, confining the negatively refracting light into an area that is 10,000 times smaller than many previous negative-index metamaterials," says principal investigator Donhee Ham, Gordon McKay Professor of Electrical Engineering and Applied Physics at SEAS.

The underlying physics of previous work in this field has often involved an entity called magnetic inductance. Ham's research group instead explored kinetic inductance, which is the manifestation of the acceleration of electrons subjected to electric fields, according to Newton's second law of motion.

At its heart, the researchers' change in strategy from using magnetic inductance to kinetic inductance stems from a simple shift in ideas.

"Magnetic inductance represents the tendency of the electromagnetic world to resist change according to Faraday's law," explains Ham. "Kinetic inductance, on the other hand, represents the reluctance to change in the mechanical world, according to Newton's law."

"When electrons are confined perfectly into two dimensions, kinetic inductance becomes much larger than magnetic inductance, and it is this very large two-dimensional kinetic inductance that is responsible for the very strong negative refraction we achieve," explains lead author Hosang Yoon, a graduate student at SEAS.

"The dimensionality profoundly affects the condensed-matter electron behaviors, and one of those is the kinetic inductance."

To obtain the large kinetic inductance, Ham and Yoon's work employs a two-dimensional electron gas (2DEG), which forms at the interface of two semiconductors, gallium arsenide and aluminum gallium arsenide. The very "clean" 2DEG sample used in this work was fabricated by coauthor Vladimir Umansky, of the Weizmann Institute.

Ham's team effectively sliced a sheet of 2DEG into an array of strips and used gigahertz-frequency electromagnetic waves (microwaves) to accelerate electrons in the leftmost few strips. The resulting movements of electrons in these strips were "felt" by the neighboring strips to the right, where electrons are consequently accelerated.

In this way, the proof-of-concept device propagates an effective wave to the right, in a direction perpendicular to the strips, each of which acts as a kinetic inductor due to the electrons' acceleration therein. This effective wave proved to exhibit what the researchers call a "staggering" degree of negative refraction.

The primary advantages of the new technology are its ability to localize electromagnetic waves into ultra-subwavelength scales and its dramatically reduced size.

This concept demonstrated with microwaves, if extended to other regions of the electromagnetic spectrum, may prove important for operating terahertz and photonic circuits far below their usual diffraction limit, and at near field.

It may also one day lead to extremely powerful microscopes and optical tweezers, which are used to trap and study minuscule particles like viruses and individual molecules.

For now, the device operates at temperatures below 20 degrees Kelvin. The researchers note, however, that a similar result can be achieved at room temperature using terahertz waves, which Ham's team is already investigating, with the carbon structure graphene as an alternative two-dimensional conductor.

"While electrons in graphene behave like massless particles, they still possess kinetic energy and can exhibit very large kinetic inductance in a non-Newtonian way," says Ham.

Kitty Y. M. Yeung, a graduate student in applied physics at SEAS, also contributed to the work as coauthor.

.


Related Links
Harvard University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Global Municipal Solid Waste Continues to Grow
Washington DC (SPX) Aug 08, 2012
Growing prosperity and urbanization could double the volume of municipal solid waste annually by 2025, challenging environmental and public health management in the world's cities, according to new research conducted by the Worldwatch Institute for its Vital Signs Online service. Although some of this waste is eventually recycled, the doubling of waste that current projections indicate wou ... read more


TECH SPACE
Roscosmos Announces Tender for Moon Rocket Design

US flags still on the moon, except one: NASA

Another Small Step for Mankind

Russia starts building Moon spaceship, eyes Lunar base

TECH SPACE
Engineering Team Develops Chip for Mars Rover

NASA shows first 'crime scene' photo of Mars landing

Orbiter Images NASA's Latest Additions To Martian Landscape

First 360-Degree Panorama From Nasa'S Curiosity Mars Rover

TECH SPACE
NASA, Louisiana Officials Renew Partnership With National Center For Advanced Manufacturing

New US website lets 'crowd' fund college grad startups

Space Apps Company Seeking Crowd Funds For Space Exploration, Research, and Education

JPL Infographics Site Wants You and Your Creativity

TECH SPACE
China's Long March-5 carrier rocket engine undergoes testing

China to land first moon probe next year

China launches Third satellite in its global data relay network

Looking Forward to Shenzhou 10

TECH SPACE
Microgravity Science Glovebox Marks Anniversary with 'Hands' on the Future

Russia Launches Space Freighter to Orbital Station

A Fish Friendly Facility for the ISS

Russian cargo ship manages to dock at ISS on second try

TECH SPACE
The Spaceport moves into action for Arianespace's next Soyuz mission to orbit two Galileo satellites

Sea Launch Prepares for the Launch of Intelsat 21

Proton Launch Failure

Ariane 5 performs 50th successful launch in a row

TECH SPACE
Five Potential Habitable Exoplanets Now

RIT Leads Development of Next-generation Infrared Detectors

UCF Discovers Exoplanet Neighbor

Can Astronomers Detect Exoplanet Oceans

TECH SPACE
Wired reporter hack reveals perils of digital age

Latin America poised for a lithium boom

Reluctant electrons enable 'extraordinarily strong' negative refraction

Wayward Satellites to Orbit for Months - Space Source




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement