Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Record-low error rate for quantum information processing with one qubit
by Staff Writers
Washington DC (SPX) Sep 05, 2011


Micrograph of NIST ion trap with red dot indicating where a beryllium ion hovers above the chip. The horizontal and vertical lines separate gold electrodes, which are tuned to hold the ion and generate microwave pulses to manipulate it. The chip was used in experiments demonstrating record-low error rates in quantum information processing with a single quantum bit. Credit: NIST.

Thanks to advances in experimental design, physicists at the National Institute of Standards and Technology (NIST) have achieved a record-low probability of error in quantum information processing with a single quantum bit (qubit)-the first published error rate small enough to meet theoretical requirements for building viable quantum computers.

A quantum computer could potentially solve certain problems that are intractable using today's technology, even supercomputers. The NIST experiment with a single beryllium ion qubit, described in a forthcoming paper,* is a milestone for simple quantum logic operations. However, a working quantum computer also will require two-qubit logic operations with comparably low error rates.

"One error per 10,000 logic operations is a commonly agreed upon target for a low enough error rate to use error correction protocols in a quantum computer," explains Kenton Brown, who led the project as a NIST postdoctoral researcher.

"It is generally accepted that if error rates are above that, you will introduce more errors in your correction operations than you are able to correct. We've been able to show that we have good enough control over our single-qubit operations that our probability of error is 1 per 50,000 logic operations."

The NIST experiment was performed on 1,000 unique sequences of logic operations randomly selected by computer software. Sequences of 10 different lengths, ranging from one to 987 operations, were repeated 100 times each.

The measured results were compared to perfect theoretical outcomes. The maximum length of the sequences was limited by the hardware used to control the experiment.

The record low error rate was made possible by two major changes in the group's experimental setup. First, scientists manipulated the ion using microwaves instead of the usual laser beams.

A microwave antenna was incorporated into the ion trap, with the ion held close by, hovering 40 micrometers above the trap surface.

The use of microwaves reduced errors caused by instability in laser beam pointing and power, as well as spontaneous ion emissions. Second, the ion trap was placed inside a copper vacuum chamber and cooled to 4.2 K with a helium bath to reduce errors caused by magnetic field fluctuations in the lab.

Brown now works at the Georgia Institute of Technology. Co-author Christian Ospelkaus contributed to the research while at NIST and is now at research institutions in Germany.

The research was supported in part by the Intelligence Advanced Research Projects Activity, the National Security Agency, the Defense Advanced Research Projects Agency and the Office of Naval Research.

K.R. Brown, A.C. Wilson, Y. Colombe, C. Ospelkaus, A.M. Meier, E. Knill, D. Leibfried and D. J. Wineland. 2011. Single-qubit gate error below 10-4 in a trapped ion. Physical Review A Forthcoming.

.


Related Links
National Institute of Standards and Technology (NIST)
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Scientists put a new spin on traditional information technology
Washington DC (SPX) Aug 30, 2011
Sending information by varying the properties of electromagnetic waves has served humanity well for more than a century, but as our electronic chips steadily shrink, the signals they carry can bleed across wires and interfere with each other, presenting a barrier to further size reductions. A possible solution could be to encode ones and zeros, not with voltage, but with electron spin, and ... read more


TECH SPACE
Armstrong relives historic Moon landing

NASA's Next Generation Robotic Lander Gets Sideways During Test

Moon Express Gets Thumbs-Up from NASA for Developing New Lunar Landing Technology

NASA Moon Mission in Final Preparations for September Launch

TECH SPACE
Rare martian lake delta spotted by Mars Express

Opportunity Begins Study of Martian Crater

Opportunity Studies Rocks on Crater Rim

Epic search for evidence of life on Mars heats up with focus on high-tech instruments

TECH SPACE
Space Agencies Meet To Discuss A Global Exploration Roadmap

Space chief warns Israel losing its edge

Hands-on space experience at German Aerospace Day

Russian Firm Unveils Plan for Space Tourism

TECH SPACE
Chang'e-2 moon orbiter travels around L2 in outer space

China State media says Tiangong 1 to launch in early Sept

Time Limits for Tiangong

Orbits for Tiangong

TECH SPACE
Wyle Selects Paragon Software For Disaster Recovery Solutions For ISS

Progress 44 accident and its consequences for Space Station

Canadian Robot Repairs Components on the Space Station

Roscosmos plans to return three ISS crew members on Sept 16

TECH SPACE
Kazakhstan won't ban Russian rocket launches from Baikonur

SwRI selected as payload integrator for three NASA suborbital flight opportunities research providers

Ariane 5's upper payload completes its integration at the Spaceport

Third ATV begins its preparations for launch on Ariane 5

TECH SPACE
The diamond planet

Greenhouse Effect Could Extend Habitable Zone

A Planet Made of Diamond

Astronomers Find Ice and Possibly Methane on Snow White

TECH SPACE
Ion armageddon: Measuring the impact energy of highly charged ions

A "nano," environmentally friendly, and low toxicity flame retardant protects fabric

Google doodles a playful mix of art and technology

Penn Physicists Develop New Insight Into How Disordered Solids Deform




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement