Subscribe free to our newsletters via your
. 24/7 Space News .




EXO LIFE
Rapidly Freezing Saltwater Could Provide Spark of Life on Icy Worlds
by Andrew Williamsfor Astrobiology Magazines
Moffett Field CA (SPX) Nov 26, 2014


According to Johnson, the electrolysis of water not only produces hydrogen gas but a significant amount of oxygen as well and if this process were to occur over a larger period of time through a naturally consistent process such as the WRE, the amount of oxygen produced "would be substantial enough to support habitation."

A research team has confirmed the existence of a process that causes the electrolysis of water, and which has the potential to drive the production of life in "Snowball Earth" scenarios and on icy satellites such as Europa and Enceladus.

The process, known as the Workman-Reynolds Effect (WRE), occurs when a dilute aqueous solution of salt rapidly freezes, causing ions in the solution to assume a negative or positive charge at the interface between ice and water.

Travis A. Johnson, a geosciences student at the University of Colorado at Boulder, said the WRE is the resulting electric potential that forms between the ice and its constituent diluted salt solution. This potential can range from a few to around 230 volts, and could lead to significant hydrogen (H2) and oxygen (O2) gas production, which are crucial elements in the formation of life as we know it.

Thermoelectric Cooling
The research team, led by Kevin Hand, deputy chief scientist of Solar System exploration at NASA's Jet Propulsion Laboratory in Pasadena, California, is investigating the WRE using an apparatus made of thermoelectric cooling units designed to rapidly freeze various salt solutions in small quantities.

The team, which also includes Andrew Park, a Systems Engineer at Honeywell Aerospace, presented its initial findings at this years' Lunar and Planetary Science Conference in Texas. The work was supported, in part, by the NASA Exobiology Program. The researchers initially focused their efforts on the study of various salts, including sodium chloride, potassium chloride, ammonium chloride, magnesium sulphate and sodium sulphate.

As a result of work previously carried out by Hand using spectroscopic data gathered by the Galileo Near-Infrared Mapping Spectrometer (NIMS) instrument, it is now commonly believed that Europa's ocean contains a significant amount of sodium and magnesium sulphates, due to radiation from the active volcanics in the neighboring moon Io, and Jupiter's magnetic interactions with the two moons.

As Johnson explains, many scientists believe that what we observe chemically on the surface of Europa may strongly reflect what we might observe underneath its icy shell.

According to Johnson, the electrolysis of water not only produces hydrogen gas but a significant amount of oxygen as well and if this process were to occur over a larger period of time through a naturally consistent process such as the WRE, the amount of oxygen produced "would be substantial enough to support habitation."

Future work with the WRE will also consider the effect that it has on dilute salt solutions with hydrocarbons present. Johnson believes that if conditions are right and hydrocarbons are present near the ice-water interface, the WRE "may provide enough electric potential to drive initial chemical reactions that are essential to the production of life."

The team was initially skeptical about the existence of the WRE, as well as about previously published results that in some cases recorded potentials of up to around 230 volts. That's equivalent to the voltage supplied by many residential mains systems around the world, and enough to power most modern electrical appliances. But Johnson says that initial results "have indicated that the WRE exists and is a natural effect that needs to be studied more closely with our modern instrumentation."

The simple fact that the WRE is a "real observable phenomena" continues to motivate the team to research its possible applications on icy satellites, he says.

"Looking at Europa, we know that it contains a salty liquid ocean based on Galileo magnetometer results, and we know that throughout the formation of our solar system Europa had to have frozen over, likely rapidly, at some point," says Johnson.

"These points alone provide us with enough certainty that the process of the WRE, or a very similar one, could have occurred on these icy satellites at some point and may even be occurring currently in rapidly freezing regions."

Although the WRE provides enough energy to drive the process of electrolysis of water, Johnson stresses that the team has not yet determined if the WRE alone could "provide enough potential to drive the initial chemical processes that are essential to the production of life."

High Variability
The Workman Reynolds Effect was first discovered in the late 1940's when E. J. Workman and S. E. Reynolds reported that a potential arises between the ice-water interface of a dilute salt solution when it is rapidly frozen.

At first, the pair proposed that this effect was a possible mechanism for the generation of thunderstorm electricity, and with recorded potentials of up to 232 volts Johnson says that the results from Workman and Reynolds have been of continued interest to a small research community over the years.

However, as researchers began to explore the WRE in greater detail, the number of variables that affect the results, including factors such as salt type, concentration and freeze rate, became "problematic" and he says that the high variability of the resulting potential created "inconsistency with previously published results."

For example, two more recent studies on the WRE published by P. W. Wilson and A. D. J. Haymet found greatly conflicting results, with one finding a potential electrical output of between 12 and 32 volts and the other declaring it was zero volts, even though the freeze rate and concentration of the solution were the same in each case.

"To give you a comparison, our initial results [using] the same freeze-rate and concentration used by Wilson and Haymet showed a peak WRE potential of around nine volts," says Johnson.

Life Under 'Extreme Conditions'
Because of the "great inconsistencies" reported in these previous studies, Johnson says that as part of the ongoing research the team aims to "deeply investigate the numerous factors of the WRE," including the effects of "bottom-up versus top-down freezing." Additionally, the team aims to study the significance of the effect when applied to icy worlds and in the conditions of Snowball Earth, the period in history when many scientists contend that the Earth's surface became entirely or nearly entirely frozen.

Johnson also highlights the fact that the WRE is "extremely sensitive to outside factors," and his advice to the astrobiological community is to continue research "on the basis that life finds a way to thrive in the most extreme conditions."

For Johnson, the fact that the ice-water interface may be one such "extreme condition" means that it merits further investigation. In his view, the ability to remotely detect the WRE would aid scientists in collecting subsurface information regarding the dominant salt present in a subsurface ocean, as well its concentration, and the possible freezing rate that the ocean is undergoing.

"This information can help astrobiologists determine whether or not a particular planet or satellite is habitable," Johnson says. "The biggest challenge ahead would be to fully and accurately catalogue the WRE potentials for various salt solutions at various concentrations as well as fully control all factors that affect the WRE."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Astrobiology Magazine
Life Beyond Earth
Lands Beyond Beyond - extra solar planets - news and science






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EXO LIFE
How Can We Search For Life On Icy Moons Such As Europa?
Moffett Field CA (SPX) Nov 26, 2014
Our solar system is host to a wealth of icy worlds that may have water beneath the surface. The Cassini spacecraft recently uncovered evidence of a possible ocean under the surface of Saturn's moon, Mimas. Mimas is not alone in the possibility of having a global ocean, which would potentially provide a foothold for life to exist. Other worlds under examination include Jupiter's moon, Europ ... read more


EXO LIFE
Young Volcanoes on the Moon

U.K. group to crowd-source funding for moon mission

After Mars, India space chief aims for the moon

China examines the three stages of lunar test run

EXO LIFE
Within Rover's Reach at Mars Target Area 'Alexander Hills'

Mars Exploration Program Director Named

Second Time Through, Mars Rover Examines Chosen Rocks

Mars was warm enough for flowing water, but only briefly

EXO LIFE
The International Space Station officially has an espresso machine

Astronauts to get 'ISSpresso' coffee machine

Tencent looks to the final travel frontier

ESA Commissions Airbus As contractor For Orion Service Module

EXO LIFE
China expects to introduce space law around 2020

China launches new remote sensing satellite

China publishes Earth, Moon photos taken by lunar orbiter

China plans to launch about 120 applied satellites

EXO LIFE
Soyuz docks at Space Station; Expedition 42 joins crew

Italy's first female astronaut heads to ISS in Russian craft

Space station gets zero-gravity 3-D printer

NASA Commercial Crew Partners Continue System Advancements

EXO LIFE
Elon Musk unveils 'drone ship' and 'x-wing' fins for rockets via Twitter

Russian Rocket Supply for Satellites Launches Continues

China launches Yaogan-24 remote sensing satellite

Soyuz Installed at Baikonur, Expected to Launch Wednesday

EXO LIFE
Hot, Super-Earths Help Track Water-Rich Atmospheres

How to estimate the magnetic field of an exoplanet?

Follow the Dust to Find Planets

NASA's TESS mission cleared for next development phase

EXO LIFE
U.S. supplies Ukraine with counter-mortar radar systems

Versatile bonding for lightweight components

Cloaking device hides across continuous range of angles

A new approach to the delivery of satellites to orbit




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.