Subscribe free to our newsletters via your
. 24/7 Space News .




CLIMATE SCIENCE
Rapid climate change and the role of the Southern Ocean
by Staff Writers
Cardiff UK (SPX) Apr 09, 2013


File image.

Scientists from Cardiff University and the University of Barcelona have discovered new clues about past rapid climate change. The research, published this month in the journal Nature Geoscience, concludes that oceanographic reorganisations and biological processes are linked to the supply of airborne dust in the Southern Ocean and this connection played a key role in past rapid fluctuations of atmospheric carbon dioxide levels, an important component in the climate system.

The scientists studied a marine sediment core from the Southern Ocean and reconstructed chemical signatures at different water depths using stable isotope ratios in the shells of foraminifera, single-celled marine organisms.

They found that the chemical difference between intermediate level and deep waters over the last 300,000 years closely resembled the changes in atmospheric carbon dioxide levels and the input of windblown dust.

Dr Martin Ziegler, School of Earth and Ocean Sciences, explained: "The deep ocean is by far the largest pool of available carbon on short timescales. In the Southern Ocean, water from the deep rises to the sea surface and comes in contact with the atmosphere.

These waters will release their carbon to the atmosphere unless marine phytoplankton captures this carbon through photosynthesis and transports it back into the deep when it dies and sinks.

The efficiency of this biological activity in the Southern Ocean is thought to depend on the input of nutrients, namely iron, contained in wind blown dust. It is also this efficiency that determines the strength of chemical stratification in the Southern Ocean."

Professor Ian Hall, School of Earth and Ocean Sciences, added: "Our study finds large changes in chemical stratification of the Southern Ocean not only across the shifts from ice ages to warm interglacial conditions, but also on more rapid, millennial timescales. However, changes in dust flux on these short timescales are much smaller.

"This could suggest that the biological response to a change in dust input is much more sensitive when the dust flux is relatively low such as it is today. This iron fertilization process might be therefore more important than previously thought."

These findings provide an important benchmark for climate modeling studies and more research will be needed to determine the significance and impact of future changes in dust input into the Southern Ocean.

.


Related Links
Cardiff University
Climate Science News - Modeling, Mitigation Adaptation






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CLIMATE SCIENCE
Ban hails Thatcher the forgotten climate warrior
United Nations (AFP) April 8, 2013
UN chief Ban Ki-Moon on Monday lauded a little-remembered act in Margaret Thatcher's welter of political firsts - when she urged action on global warming. Ban "pays tribute to her contribution to addressing climate change, having been one of the first world leaders to issue a warning about its effects by calling for action at the UN General Assembly already in 1989," said the UN spokesman M ... read more


CLIMATE SCIENCE
Russia rekindles Moon exploration program, intends setting up first human outposts there

Pre-existing mineralogy may survive lunar impacts

Lunar cycle determines hunting behaviour of nocturnal gulls

Ultraviolet spectrograph observes mercury and hydrogen in GRAIL impact plumes

CLIMATE SCIENCE
Registration Opens for NASA Night Rover Energy Challenge

Final MAVEN Instrument Integrated to Spacecraft

Used Parachute on Mars Flaps in the Wind

BusinessCom Networks Connects Mars 2013

CLIMATE SCIENCE
NASA Celebrates Four Decades of Plucky Pioneer 11

Do Intellectual Property Rights on Existing Technologies Hinder Subsequent Innovation

Boeing Completes Preliminary Design Review for Connection Between CST-100 Spacecraft and Rocket

NASA Invests in Small Business Innovative Research and Technology Proposals to Enable Future Missions

CLIMATE SCIENCE
Shenzhou's Shadow Crew

Shenzhou 10 sent to launch site

China's Next Women Astronauts

Shenzhou 10 - Next Stop: Jiuquan

CLIMATE SCIENCE
Spooky action at a distance aboard the ISS

First data released from the Alpha Magnetic Spectrometer

Alpha Magnetic Spectrometer Team Publishes First Findings

New crew takes express ride to space station

CLIMATE SCIENCE
Future Looks Bright for Private US Space Ventures

Europe's next ATV resupply spacecraft enters final preparatio?ns for its Ariane 5 launch

ILS Proton Launches Satmex 8 Satellite for Satmex

When quality counts: Arianespace reaffirms its North American market presence

CLIMATE SCIENCE
The Great Exoplanet Debate

NASA Selects Explorer Investigations for Formulation

The Great Exoplanet Debate Part Four

Astronomers Anticipate 100 Billion Earth-Like Planets

CLIMATE SCIENCE
What's between a slip and a slide?

Light may recast copper as chemical industry 'holy grail'

New camera system creates high-resolution 3-D images from up to a kilometer away

Theory and practice key to optimized broadband, low-loss optical metamaterials




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement