Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Quantum-mechanical monopoles discovered
by Staff Writers
Espoo, Finland (SPX) May 09, 2015


Researchers at Aalto University (Finland) and Amherst College (USA) have observed a point-like monopole in a quantum field itself for the first time. This discovery connects to important characteristics of the elusive monopole magnet. The results were just published in Science magazine. Watch a video on the research here. Aalto University

Researchers at Aalto University (Finland) and Amherst College (USA) have observed a point-like monopole in a quantum field itself for the first time. This discovery connects to important characteristics of the elusive monopole magnet. The results were just published in Science magazine.

The researchers performed an experiment in which they manipulated a gas of rubidium atoms prepared in a nonmagnetic state near absolute zero temperature. Under these extreme conditions they were able to create a monopole in the quantum-mechanical field that describes the gas.

'In this nonmagnetic state, a structure was created in the field describing the gas, resembling the magnetic monopole particle as described in grand unified theories of particle physics. Previously, we have used the gas to detect a monopole within a so-called synthetic magnetic field, but there has been no monopole in the quantum field describing the gas itself. Now we have finally witnessed the quantum-mechanical monopole!', enthuses Dr. Mikko Mottonen, Aalto University.

'In the nonmagnetic state of the gas, no quantum whirlpools or monopoles are created in the synthetic magnetic field. However, quantum-mechanical magnetic order prevails in the sample, and we were able to manipulate this with adjustments to an externally applied magnetic field', Mottonen continues.

'The control of those magnetic fields must be stable to a small fraction of the size of the Earth's magnetic field', adds Prof. David Hall, Amherst College. 'The main experimental challenge we faced is to prepare the ultracold gas under highly sensitive conditions, in which field fluctuations due to the motion of metal objects or power line variations can make observation of the monopoles difficult.', Hall continues.

The result is a remarkable step forward in quantum research. It is important to understand the structure of monopoles and other topological entities, in part because they appear in the models describing the early universe and affect the properties of many different materials, such as metals.

The discovery of a magnetic monopole particle is still in the future. This new result establishes that the structure of a quantum mechanical monopole does appear in nature, and therefore it further supports the possibility that magnetic monopoles exist.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Aalto University
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Game theory elucidates the collective behavior of bosons
Munich, Germany (SPX) May 01, 2015
Quantum particles behave in strange ways and are often difficult to study experimentally. Using mathematical methods drawn from game theory, physicists of Ludwig-Maximilias-Universitaet (LMU) in Munich have shown how bosons, which like to enter the same state, can form multiple groups. When scientists explore the mysterious behavior of quantum particles, they soon reach the limits of prese ... read more


TIME AND SPACE
Russia Invites China to Join in Creating Lunar Station

Japan to land first unmanned spacecraft on moon in 2018

Dating the moon-forming impact event with meteorites

Japan to land probe on the moon in 2018

TIME AND SPACE
Traffic Around Mars Gets Busy

Rock Spire in 'Spirit of St. Louis Crater' on Mars

Rover on the Lookout for Dust Devils

UAE opens space center to oversee mission to Mars

TIME AND SPACE
The language of invention: Most innovations are rephrasings of the past

NASA Confirms Electromagnetic Drive Produces Thrust in Vacuum

NASA pushes back against proposal to slash climate budget

Hawaii Says 'Aloha' to NASA's Low-Density Supersonic Decelerator

TIME AND SPACE
Xinhua Insight: How China joins space club?

Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

China's Yutu rover reveals Moon's "complex" geological history

TIME AND SPACE
Progress Incident Not Threatening Orbital Station, Work of Crew

Russia loses control of unmanned spacecraft

Japanese astronaut to arrive in ISS in May

Liquid crystal bubbles experiment arrives at International Space Station

TIME AND SPACE
ILS And Dauria announce Proton/Angara dual launch services agreement

SpaceX to test 'eject-button' for astronauts

India to launch 6 more satellites in 2015-16

Arianespace to launch HellaSat-4/SGS-1 for Arabsat and KACST

TIME AND SPACE
New exoplanet too big for its star

Robotically discovering Earth's nearest neighbors

Astronomers join forces to speed discovery of habitable worlds

Titan's Atmosphere Useful In Study Of Hazy Exoplanets

TIME AND SPACE
Researchers match physical and virtual atomic friction experiments

See flower cells in 3-D - no electron microscopy required

Northwestern scientists develop first liquid nanolaser

Rubber from dandelions




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.