Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
Quantum Computing Has Applications in Magnetic Imaging
by Staff Writers
Pittsburgh, PA (SPX) Dec 20, 2011


File image.

Quantum computing-considered the powerhouse of computational tasks-may have applications in areas outside of pure electronics, according to a University of Pittsburgh researcher and his collaborators. Working at the interface of quantum measurement and nanotechnology, Gurudev Dutt, assistant professor in Pitt's Department of Physics and Astronomy in the Kenneth P. Dietrich School of Arts and Sciences, and his colleagues report their findings in a paper published online Dec. 18 in Nature Nanotechnology.

The paper documents important progress towards realizing a nanoscale magnetic imager comprising single electrons encased in a diamond crystal.

"Think of this like a typical medical procedure-a Magnetic Resonance Imaging (MRI)-but on single molecules or groups of molecules inside cells instead of the entire body. Traditional MRI techniques don't work well with such small volumes, so an instrument must be built to accommodate such high-precision work," says Dutt.

However, a significant challenge arose for researchers working on the problem of building such an instrument: How does one measure a magnetic field accurately using the resonance of the single electrons within the diamond crystal?

Resonance is defined as an object's tendency to oscillate with higher energy at a particular frequency, and occurs naturally all around us: for example, with musical instruments, children on swings, and pendulum clocks.

Dutt says that resonances are particularly powerful because they allow physicists to make sensitive measurements of quantities like force, mass, and electric and magnetic fields. "But they also restrict the maximum field that one can measure accurately."

In magnetic imaging, this means that physicists can only detect a narrow range of fields from molecules near the sensor's resonant frequency, making the imaging process more difficult.

"It can be done," says Dutt, "but it requires very sophisticated image processing and other techniques to understand what one is imaging. Essentially, one must use software to fix the limitations of hardware, and the scans take longer and are harder to interpret."

Dutt-working with postdoctoral researcher Ummal Momeen and PhD student Naufer Nusran (A and S'08 G), both in Pitt's Department of Physics and Astronomy-has used quantum computing methods to circumvent the hardware limitation to view the entire magnetic field.

By extending the field, the Pitt researchers have improved the ratio between maximum detectable field strength and field precision by a factor of 10 compared to the standard technique used previously.

This puts them one step closer toward a future nanoscale MRI instrument that could study properties of molecules, materials, and cells in a noninvasive way, displaying where atoms are located without destroying them; current methods employed for this kind of study inevitably destroy the samples.

"This would have an immediate impact on our understanding of these molecules, materials, or living cells and potentially allow us to create better technologies," says Dutt.

These are only the initial results, says Dutt, and he expects further improvements to be made with additional research: "Our work shows that quantum computing methods reach beyond pure electronic technologies and can solve problems that, earlier, seemed to be fundamental roadblocks to making progress with high-precision measurements."

.


Related Links
Department of Physics and Astronomy at Pittsburgh,
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
New method for enhancing thermal conductivity could cool computer chips, lasers and other devices
Nashville TN (SPX) Dec 16, 2011
The surprising discovery of a new way to tune and enhance thermal conductivity - a basic property generally considered to be fixed for a given material - gives engineers a new tool for managing thermal effects in smart phones and computers, lasers and a number of other powered devices. The finding was made by a group of engineers headed by Deyu Li, associate professor of mechanical enginee ... read more


CHIP TECH
Peres promotes Israeli moon probe

Hundreds of NASA's moon rocks missing: audit

Schafer Corp Signs Licensing Agreement with MoonDust Technologies

Russia wants to focus on Moon if Mars mission fails

CHIP TECH
Meteorite Shock Waves Trigger Dust Avalanches on Mars

Opportunity at One of its Two Winter Spots

Scientists find microbes in lava tube living in conditions like those on Mars

MARSIS Completes Measurement Campaign Over Martian North Pole

CHIP TECH
Goddard Scientists Selected as Participating Scientists in Mars Lab and Cassini Missions

Mankind faces long road in space exploration

NASA Reaffirms Agency Scientific Integrity Policy

NASA to change private spacecraft plans

CHIP TECH
Tiangong-1 orbiter starts planned cabin checks against toxic gas

China celebrates success of space docking mission

Two and a Half Men for Shenzhou

China honors its 'father' of space efforts

CHIP TECH
As Soyuz Rolls ISS Crew Work On Science

ESA astronaut Andre Kuipers Ready For Launch To ISS

Astronaut TJ Creamer Learns Space Station Science From the Ground Up

FLEX-ible Insight Into Flame Behavior

CHIP TECH
Next ESA Astronaut Ready For Launch As Soyuz Rolls Out

Acra Control Proven in Low Earth Orbit

Vega moves closer to its first liftoff

Arianespace Signs First launch contracts for Vega

CHIP TECH
Earth-sized worlds spotted in new advance for exoplanets

Giant Super-Earths Made Of Diamond Are Possible

New Planet Kepler-21b discovery a partnership of both space and ground-based observations

Astronomers Find Goldilocks Planet and Others

CHIP TECH
German company finds rare earths resources in Magadascar

Apple scores hit on HTC in US patent case

Tool enables scientists to uncover patterns in vast data sets

SSTL tests TechDemoSat-1 plasma population payload




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement