Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. 24/7 Space News .




SPACE SCOPES
Pulsars make a GPS for the cosmos
by Staff Writers
Canberra, Australia (SPX) Aug 23, 2013


Dr George Hobbs with CSIRO's Parkes telescope.

Dr George Hobbs (CSIRO) and his colleagues study pulsars - small spinning stars that deliver regular 'blips' or 'pulses' of radio waves and, sometimes, X-rays.

Usually the astronomers are interested in measuring, very precisely, when the pulsar pulses arrive in the solar system. Slight deviations from the expected arrival times can give clues about the behaviour of a pulsar itself, or whether it is orbiting another star, for instance.

"But we can also work backwards," said Dr Hobbs. "We can use information from pulsars to very precisely determine the position of our telescopes."

"If the telescopes were on board a spacecraft, then we could get the position of the spacecraft."

Observations of at least four pulsars, every seven days, would be required. "Each pulsar would have to be observed for about an hour," Dr Hobbs said. "Whether you can do them all at the same time or have to do them one after the other depends on where they are and exactly what kind of detector you use."

A paper describing in detail how the system would work has been accepted for publication by the journal Advances in Space Research.

Spacecraft within the solar system are usually tracked and guided from the ground: this is the role of CSIRO's Canberra Deep Space Communication Complex, for instance. But the further out the craft go, the less accurately we can measure their locations.

For voyages beyond the solar system, spacecraft would need an on-board ('autonomous') system for navigation. Gyroscopes and accelerometers are useful tools, but the position information they give becomes less accurate over time.

"Navigating with pulsars avoids these problems," said Deng Xinping, PhD student at the National Space Science Center in Beijing, who is first author on the paper describing the system.

Scientists proposed pulsar navigation as early as 1974. Putting it into practice has recently come closer, with the development of fairly small, lightweight X-ray detectors that could receive the X-ray pulses that certain pulsars emit. NASA is exploring the technique.

"For deep-space navigation, we would use pulsars that had been observed for many years with radio telescopes such as Parkes, so that the timing of their pulses is very well measured," said CSIRO's Dr Dick Manchester, a member of the research team. "Then on board the spacecraft you'd use an X-ray telescope, which is much smaller and lighter."

Dr Hobbs and his colleagues have made a very detailed simulation of a spacecraft navigating autonomously to Mars using this combination of technologies and their TEMPO2 software.

"The spacecraft can determine its position to within about 20 km, and its velocity to within 10 cm per second," said Dr Hobbs. "To our knowledge, this is the best accuracy anyone has ever been able to demonstrate."

"Unlike previous work, we've taken into account that real pulsars are not quite perfect, they have timing glitches and so on. We've allowed for that."

The same pulsar software can be used to work out the masses of objects in the solar system.

In 2010 Dr Hobbs and his colleagues used an earlier version of the software to 'weigh' the planets out as far as Saturn - to six decimal places.

The Earth is travelling around the Sun, and this movement affects exactly when pulsar signals arrive here. To remove this effect, astronomers calculate when the pulses would have arrived at the Solar System's centre of mass, around which all the planets orbit.

"If the pulsar signals appear to be coming in at the wrong time, we know that the masses of the planets that we are using in the equations must be wrong, and we can correct for this," Dr Hobbs explained.

The new version of the software lets the astronomers rule out unseen masses, including any supposedly undiscovered planets, such as the notorious Nibiru. "Even if a planet is hard to see, there's no way to disguise its gravitational pull," Dr Hobbs said. "If we don't detect the gravitational pull, then there's no planet there. Full stop."

And what about showing that the Earth goes around the Sun? Yes, they can do that too.

"This was nailed a couple of hundred years ago," said Dr Hobbs. "But if you still need proof, we've got it."

.


Related Links
CSIRO
Space Telescope News and Technology at Skynightly.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





SPACE SCOPES
NASA Ends Attempts to Fully Recover Kepler Spacecraft
Washington DC (SPX) Aug 19, 2013
Following months of analysis and testing, the Kepler Space Telescope team is ending its attempts to restore the spacecraft to full working order, and now is considering what new science research it can carry out in its current condition. Two of Kepler's four gyroscope-like reaction wheels, which are used to precisely point the spacecraft, have failed. The first was lost in July 2012, and t ... read more


SPACE SCOPES
NASA Prepares for First Virginia Coast Launch to Moon

NASA Selects Launch Services Contract for OSIRIS-REx Mission

Environmental Controls Move Beyond Earth

Bad night's sleep? The moon could be to blame

SPACE SCOPES
International Space Agencies Outline Steps to Take Humans to Mars

Snapping Pictures of the Martian Moons

Mars Rover Opportunity Working at Edge of 'Solander'

MRO Swapping Motion-Sensing Units

SPACE SCOPES
NSBRI and NASA Reduce Space Radiation Risks by Soliciting for Center of Space Radiation Research

Next Generation of Explorers Takes the Stage

Has Voyager 1 Left The Solar System?

Groundbreaking space exploration research at UH

SPACE SCOPES
China launches three experimental satellites

Medical quarantine over for Shenzhou-10 astronauts

China's astronauts ready for longer missions

Chinese probe reaches record height in space travel

SPACE SCOPES
Cosmonauts Complete Spacewalk, Unfold Russian Flag in Space

Italian astronaut recounts spacewalk drowning terror

ISS Boosting Biological Research in Orbit

Japanese Cargo Craft Captured, Berthed to ISS

SPACE SCOPES
NASA Explores New Uses for Historic Launch Structures

Telemetry data confirms launch of South Korean satellite

ISRO pins hopes on GSLV-D5

Lockheed Martin Selects CubeSat Integrators for Athena to Enhance Launch Systems Integration

SPACE SCOPES
Study: Planets might be 'born free' without a parent star

Distant planet sets speed record by orbiting its star every 8.5 hours

Kepler planet hunter spacecraft is beyond repair: NASA

Astronomers Image Lowest-mass Exoplanet Around a Sun-like Star

SPACE SCOPES
U.S. firm releases $1,400 scanner to create 3-D printing files

Boeing Communications Relay Satellites Complete Space, Earthly Testing

Mobius strip ties liquid crystal in knots to produce tomorrow's materials and photonic devices

The world's future tallest skyscrapers: who will be first to break the 1,000-meter mark?




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement