Subscribe free to our newsletters via your
. 24/7 Space News .

Precision Motion Tracking - Thousands of Cells at a Time
by Staff Writers
Washington DC (SPX) Sep 20, 2012

This illustration and data set depict the new microscopy technique developed by Ozcan and his colleagues at UCLA. This image shows a schematic of the system, which involves two partially coherent light sources (a red 625 nanometer wavelength LED and a blue 470 nanometer wavelength LED) that simultaneously illuminate the microscope field of view from two different angles. A CMOS sensor records the resulting holograms and software uses that information to encode the exact positions of the target cells. Credit: Ozcan Research Group at UCLA.

Researchers have developed a new way to observe and track large numbers of rapidly moving objects under a microscope, capturing precise motion paths in three dimensions. Over the course of the study researchers followed an unprecedented 24,000 rapidly moving cells over wide fields of view and through large sample volumes, recording each cell's path for as long as 20 seconds.

"We can very precisely track the motion of small things, more than a thousand of them at the same time, in parallel," says research lead and National Science Foundation CAREER awardee Aydogan Ozcan, an electrical engineering and bioengineering professor at UCLA.

"We were able to achieve sub-micron accuracy over a large volume, allowing us to understand, statistically, how thousands of objects move in different ways."

The latest study is an extension of several years of NSF-supported work by Ozcan and his colleagues to develop lens-free, holographic microscopy techniques with applications for field-based detection of blood-borne diseases and other areas of tele-medicine.

Those efforts recently resulted in a Popular Mechanics Breakthrough Award and a National Geographic Emerging Explorer Award, among others.

Ozcan's research is also supported through an NIH Director's New Innovator Award, Office of Naval Research Young Investigator Award and an Army Research Office Young Investigator Award from the Department of Defense.

For the recent work, Ozcan and his colleagues--Ting-Wei Su, also of UCLA, and Liang Xue, of both UCLA and Nanjing University of Science and Technology in China--used offset beams of red and blue light to create holographic information that, when processed using sophisticated software, accurately reveal the paths of objects moving under a microscope.

The researchers tracked several cohorts of more than 1,500 human male gamete cells over a relatively wide field of view (more than 17 square millimeters) and large sample volume (up to 17 cubic millimeters) over several seconds.

The technique, along with a novel software algorithm that the team developed to process observational data, revealed previously unknown statistical pathways for the cells.

The researchers found that human male gamete cells travel in a series of twists and turns along a constantly changing path that occasionally follows a tight helix--a spiral that, 90 percent of the time, is in a clockwise (right-handed) direction.

Because only four to five percent of the cells in a given sample traveled in a helical path at any given time, researchers would not have been able to observe the rare behavior without the new high-throughput microscopy technique.

"This latest study is an extension of truly novel and creative work," says Leon Esterowitz, the NSF biophotonics program officer who has supported Ozcan's efforts.

"The holographic technique could accelerate drug discovery and prove valuable for monitoring pharmaceutical treatments of dangerous microbial diseases."

The PNAS paper reports observations of 24,000 cells over the duration of the experiments. Such a large number of observations provide a statistically significant dataset and a useful methodology for potentially studying a range of subjects, from the impact of pharmaceuticals and other substances on large numbers of cells--in real time--to fertility treatments and drug development.

The same approach may also enable scientists to study quick-moving, single-celled microorganisms. Many of the dangerous protozoa found in unsanitary drinking water and rural bodies of water have only been observed in small samples moving through an area that is roughly two dimensional.

The new lens-free holographic imaging technique could potentially reveal unknown elements of protozoan behavior and allow real-time testing of novel drug treatments to combat some of the most deadly forms of those microbes.


Related Links
Nano Technology News From
Computer Chip Architecture, Technology and Manufacture

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Nanoengineers can print 3D microstructures in mere seconds
San Diego CA (SPX) Sep 17, 2012
Nanoengineers at the University of California, San Diego have developed a novel technology that can fabricate, in mere seconds, microscale three dimensional (3D) structures out of soft, biocompatible hydrogels. Near term, the technology could lead to better systems for growing and studying cells, including stem cells, in the laboratory. Long-term, the goal is to be able to print biological ... read more

Protection for Moon, Mars astronauts eyed

Russia to start research base on the Moon

Remains of astronaut legend Neil Armstrong buried at sea

Memorial service honors 'man on the moon' Armstrong

Dark Bands Run Through Light Layers

NASA Mars Rover Curiosity Looks at Ground Ahead, Moons Above

'Jake Matijevic' Contact Target for Curiosity

Mars rover to launch first rock study

Brazil unveils tax incentives to boost tech innovation

New Technology Being Stymied by Copyright Law

Boeing Establishes Configuration of Commercial Crew Transportation

Mankind's messenger at the final frontier

Tiangong Orbit Change Signals Likely Date for Shenzhou 10

China Focus: Timeline for China's space research revealed

China eyes next lunar landing as US scales back

China unveils ambitious space projects

Crew Members Prepare for Departure

ISS Crew Lands Safely in Kazakhstan

ISS Crew Enjoys Light Duty Day

Europe's ATV-3 Spacecraft to Readjust Space Station's Orbit

Failure Review Oversight Board Establishes Proton Return to Flight Schedule

HISPASAT chooses Arianespace to launch its Amazonas 4A and AG1 satellites

Arianespace signs multi-launch services agreement with SKY Perfect JSAT of Japan

Vandenberg's Fifth Atlas V lifts off

Meteors Might Add Methane to Exoplanet Atmospheres

Two 'hot Jupiters' found in star cluster: NASA

Planets Can Form in the Galactic Center

Birth of a planet

Astrium wins DEOS contract to demonstrate in-orbit servicing

French strike threatens to take shine off iPhone 5 launch

Lockheed Martin Awarded Contract to Solidify Long Range Radar Requirement for 3DELRR Program

Taiwan LCD titan fined $500 mn for price fixing

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement