Subscribe free to our newsletters via your
. 24/7 Space News .




BLUE SKY
Placing Pieces in the Atmospheric Puzzle
by Staff Writers for Astrobiology Magazine
Moffett Field CA (SPX) May 15, 2014


Scientists collected data with the Zeppelin NT as part of the EU project PEGASOS. Image courtesy Forschungszentrum Julich and Florian Rubach.

Earth's atmosphere contains a number of trace gases that, while only present in small amounts, play important roles in processes that affect our planet's climate. One of these gases is nitrous acid, or HONO. HONO, when reacting with sunlight, is a source of hydroxyl radicals (OH) in the lower atmosphere.

These radicals are thought to help control the level of pollutants in the lowest region of the Earth's atmosphere, known as the troposphere.

"We sometimes refer to OH as the 'detergent' of the atmosphere, because it is the main atmospheric oxidant and helps to scrub the atmosphere of nearly all reactive gases," said Glenn Wolfe of the Atmospheric Chemistry and Dynamics Lab at NASA's Goddard Space Flight Center. "OH and HO2 inter-convert rapidly, thus we usually refer to them collectively as the HOx family."

Members of the HOx family allow the atmosphere to clean itself, and can even help break down hydrocarbons released by human activities like the burning of fossil fuels.

"The main sources of HOx are: ozone + light + water; formaldehyde + light; and HONO + light," explained Wolfe. "The relative strength of these sources depends on many physical and chemical parameters, and is thus a strong function of both location and time."

Previously, scientists thought that, in some regions, reactions between HONO and sunlight were responsible for creating 80% of the OH in the troposphere. The new study provides more details about the relationship between HOx and HONO, and shows that the old theory could be very wrong.

Sampling the Atmosphere
Wolfe and his colleagues spent time on a giant Zeppelin aircraft, collecting samples and atmospheric data from the skies above northern Italy. What they found was a large amount of HONO sitting in an undisturbed layer of the troposphere. The layer is isolated from processes at the Earth's surface by temperature inversions that happen early in the day.

This layer of HONO is produced by reactions between nitrous oxides (such as NO2) and hydroperoxy radicals (HO2), and ultimately ends up consuming HOx itself.

In short, OH is produced when HONO is struck by sunlight... but the OH is then quickly mopped up to produce new HONO after it is formed. This means that, overall, HONO is not actually an important source of OH production in this region of the atmosphere after all. It's a closed cycle where HONO produces OH, and the OH is then used to re-build the HONO.

Wolfe explained that the results do not mean there is less OH in the atmosphere than previously thought. Scientists have taken direct measurements of OH in the past, so we have a good idea of how much is present. The study does help us understand where the OH comes from and how the levels of OH in the atmosphere are maintained.

"What these results offer is an explanation for a long-standing discrepancy between HONO and OH observations," said Wolfe. "In many previous studies, the amount of HONO observed would imply much more OH than was observed. By assuming HONO formation is a sink for HOx, we have "null cycle" that stabilizes the chemistry."

A Small Piece of the Puzzle
The findings concerning HONO in the troposphere could be important in understanding atmospheric pollution at a local level. In terms of the global perspective, however, Wolfe feels there are larger forces at play.

"Globally, OH production is dominated by ozone photolysis, thus HONO will have a small impact on that scale," Wolfe commented.

Astrobiologists are concerned with processes in the atmosphere that affect the habitability of planet Earth. Atmospheric chemistry is also an important field of research for astrobiologists who hope to identify inhabited planets around distant stars by observing extrasolar atmospheres.

This study may not have huge implications for understanding atmospheric chemistry at the global level on Earth and its role in habitability, but the findings are still an important piece of the larger puzzle.

"HONO is an interesting and important molecule when considering near-surface air quality," said Wolfe, "but in the long term, climate change is our greatest enemy."

The study was supported in part by NOAA and the National Science Foundation.

The paper, "Missing Gas-Phase Source of HONO Inferred from Zeppelin Measurements in the Troposphere," was published in the journal Science.

.


Related Links
Astrobiology Magazine
The Air We Breathe at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








BLUE SKY
NASA Carbon-Counting Satellite Arrives at Launch Site
Vandenberg AFB CA (SPX) May 02, 2014
A NASA spacecraft designed to make precise measurements of carbon dioxide in Earth's atmosphere is at Vandenberg Air Force Base, Calif., to begin final preparations for launch. The Orbiting Carbon Observatory-2 arrived Wednesday at its launch site on California's central coast after traveling from Orbital Sciences Corp.'s Satellite Manufacturing Facility in Gilbert, Ariz. The spacecraft no ... read more


BLUE SKY
LRO View of Earth

Saturn in opposition tonight, will appear next to the moon

Russia to begin Moon colonization in 2030

Astrobotic Partners With NASA To Develop Robotic Lunar Landing Capability

BLUE SKY
When fantasy becomes reality: first seeds to be planted soon on Mars

NASA's Saucer-Shaped Craft Preps for Flight Test

MAVEN Solar Wind Ion Analyzer Will Look at Key Player in Mars Atmosphere Loss

NASA Mars Rover Curiosity Wrapping Up Waypoint Work

BLUE SKY
A light-speed voyage to the distant future

US spacecraft enters giant asteroid's orbit

Chris Hadfield's 'Space Oddity' video to be taken off YouTube

'Convergent' Research Solves Problems that Cross Disciplinary Boundaries

BLUE SKY
Moon rover Yutu comes closer to public

The Phantom Tiangong

New satellite launch center to conduct joint drill

China issues first assessment on space activities

BLUE SKY
New ISS Expedition Unaffected by Proton Crash

US-Russian Tensions Roiling Outer Space Cooperation

Botanical Studies, Dragon Departure Preps for ISS Crew

NASA hopes to continue cooperation with Russia on ISS

BLUE SKY
SpaceX's Dragon spacecraft returns to Earth from space station

SpaceX-3 Mission To Return Dragon's Share of Space Station Science

SpaceX supply capsule heads back to Earth

Replacing Russian-made rocket engines is not easy

BLUE SKY
Giant telescope tackles orbit and size of exoplanet

Odd planet, so far from its star

New Exomoon Hunting Technique Could Find Solar System-like Moons

Length of Exoplanet Day Measured for First Time

BLUE SKY
China says space debris recovered: report

Physicists say they know how to turn light into matter

Australians report flaming object falling from sky

Pentagon plans multi-billion dollar project to combat space junk




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.