Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Physicists Take Atoms For A Walk
by Staff Writers
Innsbruck, Austria (SPX) Mar 15, 2010


An example for a random walk is the Galton board, which is used to demonstrate binomial distribution to students. On this board, balls are dropped from the top and they repeatedly bounce either left or right in a random way as they hit pins stuck in the board. Credit: Antoine Taveneaux

A team of physicists headed by Christian Roos and Rainer Blatt from the Institute of Quantum Optics and Quantum Information of the Austrian Academy of Sciences realize a quantum walk in a quantum system with up to 23 steps. It is the first time that this quantum process using trapped ions is demonstrated in detail.

When a hiker comes to a junction s/he has to decide which way to take. All of these decisions, eventually, lead the hiker to the intended destination. When the hiker forgot the map, s/he has to make a decision randomly and gets to the destination with more or less detours. In science this is called a random walk and can regularly be encountered in mathematics and physics.

In 1827, for example, the Scottish botanist Robert Brown found out that pollen grains show irregular fluttering vibrations on water drops. This effect is caused by a random motion of water molecules - a phenomenon known in the scientific world as Brownian motion. Another example is the Galton board, which is used to demonstrate binomial distribution to students.

On this board, balls are dropped from the top and they repeatedly bounce either left or right in a random way as they hit pins stuck in the board.

Atom takes a "quantum walk"
The Innsbruck scientists have now transferred this principle of random walk to quantum systems and stimulated an atom to take a quantum walk: "We trap a single atom in an electromagnetic ion trap and cool it to prepare it in the ground state," explains Christian Roos from the Institute of Quantum Optics and Quantum Information (IQOQI).

"We then create a quantum mechanical superposition of two inner states and send the atom on a walk." The two internal states correspond to the decision of the hiker to go left or right. However, unlike the hiker the atom does not really have to decide where to go; due to the superposition of the two states, both possibilities are presented at the same time.

"Depending on the internal state, we shift the ion to the right or to the left," explains Christian Roos. "Thereby, the motional and internal state of the ion are entangled."

After each step the experimental physicists modify the superposition of the inner states by a laser pulse and again shift the ion to the left or right. The physicists can repeat this randomly controlled process up to 23 times, while collecting data about how quantum walks work. By using a second ion, the scientists extend the experiment, giving the walking ion the additional possibility to stay instead of moving to the right or left.

Better understanding of natural phenomena
The statistic analysis of these numerous steps confirms that quantum walks differ from classical (random) walks. While, for example, the balls of a Galton board move away from the starting point statistically very slowly, quantum particles spread much faster on their walk.

These experiments, which have also been realized in a similar way in Bonn, Munich and Erlangen with atoms, ions and photons, can be applied to studying natural phenomena. For example, researchers suspect that the energy transport in plants works more efficiently because of quantum walks than would be the case with classical walks.

In addition, a regime of quantum walk is of importance for developing a quantum computer model, which could solve ubiquitous problems. For example, applying quantum walks in such a model would help in finding search quantum algorithms that outperform their classical counterparts as different directions could be chosen simultaneously.

.


Related Links
University of Innsbruck
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Foiling An Attack On General Relativity
San Francisco CA (SPX) Mar 15, 2010
Einstein's General Theory of Relativity explains gravity in terms of the curvature of space by mass. Dating from the second decade of the 20th century, after more than 90 years it is still the basis of our understanding of how gravity works to shape the cosmos. But as evidence for a universe filled with dark matter and dark energy has mounted, General Relativity's ability to explain the st ... read more


TIME AND SPACE
New Lunar Images And Data Available To Public

Astronauts decry Obama moon decision

Rocket To Go To Moon Under Design

Student Ready To Battle At 17th Annual Great Moonbuggy Race

TIME AND SPACE
Lost Into Space Goes The Martian Atmosphere

Opportunity Driving Away From Concepcion Crater

Russia Shortlists 11 For 520-Day Simulation Of Mars Mission

Lava Likely Made River-Like Channel On Mars

TIME AND SPACE
US lawmakers urge Obama to save NASA moon program

Bipartisan Legislation Introduced To Close The Space Gap

Go Into The Webb Telescope Clean Room

Obama to host April space conference

TIME AND SPACE
China To Conduct Maiden Space Docking In 2011

China chooses first women astronauts

Russian Launch Issues Delaying China's First Mars Probe

China Plans To Launch Third Unmanned Moon Probe Around 2013

TIME AND SPACE
World Space Agencies Confirm Serviceability Of ISS Through 2020

ISS Expedition 22 To Return To Earth On March 18

ISS Space Agency Heads Meet To Plan 2011 Operations

Space station could operate until 2028, says consortium

TIME AND SPACE
ILS Proton To Launch Intelsat 21 And 23

Parallel Preparations Continue For Ariane 5 Flights

USAF Force Licenses Two Launch Complexes For Commercial Use

Aerojet Supports Launch and Orbital Placement of GOES-P

TIME AND SPACE
How To Hunt For Exoplanets

Watching A Planetary Death March

Seeing ExoPlanet Atmospheres From The Ground

New Technique For Detecting Earth-Like Planets

TIME AND SPACE
Raytheon, Motion Reality Ink Agreement For Virtual Applications

Shocking Recipe For Making Killer Electrons

First Station Materials Science Rack Being Processed

Three FASTSAT Instruments Pass Tests




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement