Subscribe free to our newsletters via your
. 24/7 Space News .

Physicists Extract Photons From Diamond Ring
by Staff Writers
London, UK (SPX) Feb 15, 2013

Scanning electron microscope image of the device used to extract ZPL photons from a diamond NV centre. The waveguide - with a diffraction grating at either end - is below the ring of diamond. (Courtesy: Andrei Faraon).

Physicists in the US are the first to make an integrated device that extracts photons from a tiny piece of diamond before the light is sent through a waveguide to the outside world.

The photons all have the same frequency and originate in a nitrogen vacancy (NV), which is a defect that occurs in diamond when two neighbouring carbon atoms are replaced by a nitrogen atom and an empty lattice site. According to the researchers, the chip could be used to create quantum-information technology such as quantum repeaters.

For anyone trying to build a quantum computer NVs are useful because they have an electronic spin that is extremely well isolated from the surrounding lattice - so if an NV is placed in a certain spin state then it will remain in that state for ages, even at room temperature.

An NV can also emit just a single photon if excited by a laser of the right wavelength. Taken together, these properties mean that NVs allow data to be stored for long times in a defect, before being read out as a single photon.

Researchers are particularly interested in extracting photons that do not interact with the surrounding lattice because these "zero phonon line" (ZPL) photons have a well defined frequency.

Unfortunately, one challenge in building NV-based quantum systems is how to reliably get ZPL photons out of the diamond and into an integrated optical system, where it can be processed further. What Andrei Faraon and colleagues from Caltech, Hewlett Packard and the University of Washington have managed to do is to create an integrated optical system that does just that.

Matching frequencies
At the heart of their device is a ring of diamond that is just 4.5 um in diameter and contains NV centres. The ring sits next to a waveguide that is about 10 um long (see figure).

The device is cooled to below 10K and the ring is scanned with a green laser until a NV centre with a resonant frequency close to that of the ring is located. The team then introduces a noble gas into the cryostat and some of it condenses on the ring - changing its resonant frequency. More gas is added until the frequencies of the NV centre and the ring exactly match.

The ZPL photons are created by firing the green laser at the NV centre. The photons first circulate around the ring before jumping into the wave guide. They then travel to either end of the waveguide, where a diffraction grating scatters them out of the device, where they can be observed with a microscope connected to a spectrometer and a photodetector.

The researchers found that they collected about 25 times more ZPL photons from these devices than were collected from NV centres in similar samples of diamond that were not part of integrated devices.

Faraon sees this work as an important step towards creating integrated circuits in which ZPL photons carry quantum information from one NV centre to another. "We demonstrate that photons - the information carriers - from a single NV centre can be coupled to an optical resonator and then further coupled to a photonic waveguide," he says. "We hope that multiple devices of this kind will be interconnected in a photonic network on a chip."

What Faraon and colleagues want to do now is to develop devices that include more than one NV centre and show that photons emitted by two NVs can be made to interfere - a pre-requisite for entangling NV centres. Once entanglement has been achieved, the devices could then be used as quantum repeaters, which absorb and re-emit entangled photons without disturbing the entangled state - something that is necessary if quantum information is to be transmitted over large distances.

Faraon told that his colleagues at Hewlett Packard are now working on entangling NV centres on the same chip.

The device is described in the New Journal of Physics.


Related Links
Institute Of Physics
Understanding Time and Space

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Invisible tool enables new quantum experiments
Vienna, Austria (SPX) Feb 15, 2013
Experiments on the quantum wave nature have enabled researchers to precisely measure tiny forces and displacements as well as to shed light onto the unexplored zone between the microscopic realm of quantum physics and our everyday world Matter wave interferometry has a long standing tradition at the University of Vienna, where the first quantum interference of large molecules has already b ... read more

Building a lunar base with 3D printing

US, Europe team up for moon fly-by

Russia to Launch Lunar Mission in 2015

US, Europe team up for moon fly-by

Rover Walkabout Continues at Cape York

Mars Rock Takes Unusual Form

In milestone, Mars rover collects first bedrock sample

How The World's Saltiest Pond Gets Its Salt; Implications For Water On Mars

Orion Lands Safely on Two of Three Parachutes in Test

Supersonic skydiver even faster than thought

Ahmadinejad says ready to be Iran's first spaceman

Iran's Bio-Capsule Comes Back from Space

Welcome Aboard Shenzhou 10

Reshuffle for Tiangong

China to launch 20 spacecrafts in 2013

Mr Xi in Space

Low-Gravity Flights Will Aid ISS Fluids and Combustion Experiments

Progress docks with ISS

NASA to Send Inflatable Pod to International Space Station

ISS to get inflatable module

Another Sea Launch Failure

ILS Concludes Yamal 402 Proton Launch Investigation

Ariane 5 delivers record payload off back-to-back launches this week

Eutelsat and Arianespace sign new multi-year multiple launch services agreement

Earth-like planets are right next door

Direct Infrared Image Of An Arm In Disk Demonstrates Transition To Planet Formation

Kepler Data Suggest Earth-size Planets May Be Next Door

Earth-like planets may be closer than thought: study

Researchers strain to improve electrical material and it's worth it

Explosive breakthrough in research on molecular recognition

Indra Develops The First High-Resolution Passive Radar System

ORNL scientists solve mercury mystery

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement