Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Photonic gels are colorful sensors
by Staff Writers
Houston TX (SPX) Oct 11, 2012


A photonic gel developed at Rice University and the Massachusetts Institute of Technology self-assembles from long polymer molecules. Polystyrene and poly(2-vinyl pyridine) are mixed in a solution that, when evaporated, allows the polymers to quickly form into nanosized layers. The layers can be tuned to reflect specific colors when exposed to particular chemicals. (Joseph Walish/MIT).

Materials scientists at Rice University and the Massachusetts Institute of Technology (MIT) have created very thin color-changing films that may serve as part of inexpensive sensors for food spoilage or security, multiband optical elements in laser-driven systems and even as part of high-contrast displays.

The new work led by Rice materials scientist Ned Thomas combines polymers into a unique, self-assembled metamaterial that, when exposed to ions in a solution or in the environment, changes color depending on the ions' ability to infiltrate the hydrophilic (water-loving) layers.

The research was published in the American Chemical Society journal ACS Nano.

The micron-thick material called a photonic gel, far thinner than a human hair, is so inexpensive to make that, Thomas said, "We could cover an area the size of a football field with this film for about a hundred dollars."

But for practical applications, much smaller pieces would do. "Suppose you want a food sensor," said Thomas, the William and Stephanie Sick Dean of Rice's George R. Brown School of Engineering and former chair of the Department of Materials Science and Engineering at MIT.

"If it's inside a sealed package and the environment in that package changes because of contamination or aging or exposure to temperature, an inspector would see that sensor change from blue to red and know immediately the food is spoiled."

Such visual cues are good, he said, "especially when you need to look at a lot of them. And you can read these sensors with low tech, either with your own eyes or a spectrophotometer to scan things."

The films are made of nanoscale layers of hydrophobic polystyrene and hydrophilic poly(2-vinyl pyridine). In the liquid solution, the polymer molecules are diffused, but when the liquid is applied to a surface and the solvent evaporates, the block copolymer molecules self-assemble into a layered structure.

The polystyrene molecules clump together to keep water molecules out, while the poly(2-vinyl pyridine), P2VP for short, forms its own layers between the polystyrene. On a substrate, the layers form into a transparent stack of alternating "nano-pancakes." "The beauty of self-assembly is that it's simultaneous, all the layers forming at once," Thomas said.

The researchers exposed their films to various solutions and found different colors depending on how much solvent was taken up by the P2VP layers. For example with a chlorine/oxide/iron solution that is not readily absorbed by the P2VP, the film is transparent, Thomas said. "When we take that out, wash the film and bring in a new solution with a different ion, the color changes."

The researchers progressively turned a clear film to blue (with thiocyanate), to green (iodine), to yellow (nitrate), to orange (bromine) and finally to red (chlorine). In each case, the changes were reversible.

Thomas explained that the direct exchange of counterions from the solution to the P2VP expands those layers and creates a photonic band gap - the light equivalent of a semiconducting band gap - that allows color in a specific wavelength to be reflected. "The wavelengths in that photonic band gap are forbidden to propagate," he said, which allows the gels to be tuned to react in specific ways.

"Imagine a solid in which you create a band gap everywhere but along a 3-D path, and let's say that path is a narrowly defined region you can fabricate within this otherwise photonic material. Once you put light in that path, it is forbidden to leave because it can't enter the material, due to the band gap.

"This is called molding the flow of light," he said.

"These days in photonics, people are thinking about light as though it were water. That is, you can put it in these tiny pipes. You can turn light around corners that are very sharp. You can put it where you want it, keep it from where you don't want it. The plumbing of light has been much easier than in the past, due to photonics, and in photonic crystals, due to band gaps."

Co-authors of the paper are Rice research scientist Jae-Hwang Lee and MIT postdoctoral researchers Ho Sun Lim and Joseph Walish. The work was supported by the U.S. Army Research Office, the U.S. Air Force and the Korea Research Foundation, funded by the Korean government.

.


Related Links
Rice University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Architect shares simple green architecture improvements for homes and offices
Washington DC (SPX) Oct 10, 2012
A lot of green energy ideas would make you blue in the face if you knew the truth. In the new book Architect Laid Bare! In Shades of Green, veteran architect Robert Brown Butler focuses on taking the mystery out of the challenges of green architecture. In this highly readable and comprehensive book, he explains the newest and best ideas for creating each element of a modern building's design and ... read more


TECH SPACE
China has no timetable for manned moon landing

Senior scientist discusses China's lunar orbiter challenges

NASA sees 'gateway' for space missions

Protection for Moon, Mars astronauts eyed

TECH SPACE
Curiosity Update: Object Likely Benign Plastic from Curiosity Rover

First Scoopful A Success

Checking a Bright Object on the Ground

China to collect samples from Mars by 2030: Xinhua

TECH SPACE
Grants help scientists explore boundary between science and science fiction

Dead stars could be cosmic 'GPS'

Dead stars could be the future of spacecraft navigation

Interstellar Travelers of the Future May be Helped by MU Physicist's Calculations

TECH SPACE
ChangE-2 Mission To Lagrange L2 Point

Meeting of heads of ESA and China Manned Space Agency

China Spacesat gets 18-million-USD gov't support

Tiangong Orbit Change Signals Likely Date for Shenzhou 10

TECH SPACE
Station Crew Opens Dragon Hatch

NASA and International Partners Approve Year Long ISS Stay

Year on ISS planned ahead of manned Mars mission

NASA Celebrates Milestone Liftoff

TECH SPACE
SpaceX Dragon Successfully Attaches To Space Station

Another Ariane 5 Enters Launch Campaign Queue

SpaceX capsule links up with space station: NASA

Assembled and poised for launch: Soyuz is ready with its two Galileo navigation satellites

TECH SPACE
Candels Team Discovers Dusty Galaxies At Ancient Epoch With Hubble Space Telescope

Large water reservoirs at the dawn of stellar birth

Comet crystals found in a nearby planetary system

The Magnetic Wakes of Pulsar Planets

TECH SPACE
Boeing to Build 702HP Communications Satellite for SES

Rovsing And SSBV Merge Satellite Simulation And Test Services

TACLANE-MultiBook Delivers Classified and Unclassified Information for Government and Agency Workers

Photonic gels are colorful sensors




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement