Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Penn Research Outlines Basic Rules for Construction With a Type of Origami
by Staff Writers
Philadelphia PA (SPX) Dec 18, 2014


Randall Kamien. Watch a video on the research here.

Origami is capable of turning a simple sheet of paper into a pretty paper crane, but the principles behind the paper-folding art can also be applied to making a microfluidic device for a blood test, or for storing a satellite's solar panel in a rocket's cargo bay.

A team of University of Pennsylvania researchers is turning kirigami, a related art form that allows the paper to be cut, into a technique that can be applied equally to structures on those vastly divergent length scales.

In a new study, the researchers lay out the rules for folding and cutting a hexagonal lattice into a wide variety of useful three-dimensional shapes. Because these rules ensure the proportions of the hexagons remain intact after the cuts and folds are made, the rules apply to starting materials of any size. This enables materials to be selected based on their relevance to the ultimate application, whether it is in nanotechnology, architecture or aerospace.

The study was conducted by Toen Castle, a postdoctoral researcher in the School of Arts and Science's Department of Physics and Astronomy; Shu Yang, a professor in the School of Engineering and Applied Science's Department of Materials Science and Engineering; and professor Randall Kamien, also of the Department of Physics and Astronomy.

Also contributing to the study were undergraduate Xingting Gong and postdoctoral researcher Daniel Sussman, members of Kamien's research group; graduate student Euiyeon Jung, a member of Yang's group; and postdoctoral researcher Yigil Cho, who works in both groups.

It was published in the journal Physical Review Letters.

"If you see a fancy piece of origami," Kamien said, "it can have arbitrarily small folds. We want to make something much simpler. If there are standards for the size of folds and cuts, we can make the math apply to any length scale. We can make channels, gates, steps and other 3-D shapes without needing to know anything about the size of the sheet and then combine those building blocks into even more complex shapes."

A hexagonal lattice may seem like an odd choice for a starting point, but the pattern has advantages over a seemingly simpler tessellation, such as one made from squares.

"The connected centers of the hexagons make triangles," Castle said, "so, if you start with a hexagonal lattice, you get the triangles for free. It's like two lattices in one, whereas if you start with squares, you only get squares."

"Plus," Yang said, "it's easier to fill a space with a hexagonal lattice and move from 2-D to 3-D. That's why you see it in nature, in things like honeycombs."

Starting from a flat hexagonal grid on a sheet of paper, the researchers outlined the fundamental cuts and folds that allow the resulting shape to keep the same proportions of the initial lattice, even if some of the material is removed. This is a critical quality for making the transition from paper to materials that might be used in real-world applications.

"You can think of the sheet of paper as a template for a mesh of rods that you can lay on top of it," Castle said. "Alternatively, you can think of the paper as the membrane that attaches to a scaffolding. Both concepts are in the theory from the start; it's just a question of whether you want to build the rods or the material between them."

Having a set of rules that draws on fundamental mathematical principles means the kirigami approach can be applied equally across length scales, and with almost any material.

"The rules we lay out," Kamien said, "tell you how you make the cuts so you only have to fold on straight lines, and so that, when you fold them together, the rods remain the same length and the centers remain the same distance apart. You may have to bend [or put hinges on] some of the rods to make the folds, but you don't have to be able to stretch them. That also means the whole structure remains rigid when you're done folding."

"This means it's just a matter of picking the materials with the properties you want for your application," Yang said. "We can go from nanoscale materials like graphene to materials you would make clothing out of to materials you would see in a space station or satellite."

The rules also guarantee that "modules," basic shapes like channels that can direct the flow of fluids, can be combined into more complex ones. For example, iterating those folds and cuts can produce a ratcheting interface that can lock itself into place at different points. This structural feature could change the volume of a channel or even serve as an actuator for a robot.

Kirigami is particularly attractive for nanoscale applications, where the simplest, most space-efficient shapes are necessary, and self-folding materials would circumvent some of the fabrication challenges inherent in working at such small scales.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
University of Pennsylvania
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Live images from inside materials
Furth, Germany (SPX) Dec 17, 2014
X-rays are a tried and tested way to investigate components and materials. Researchers are now developing an X-ray detector capable of delivering particularly high-quality 3D images in real time. This will make it possible to precisely reconstruct even the processes going on inside materials and e.g. provide a reliable way of detecting minoscule faults. In medicine, X-rays provide high-res ... read more


TECH SPACE
'Shooting the Moon' with Satellite Laser Ranging

Moon Express testing compact lunar lander at Kennedy

UK Plans to Drill Into Moon, Explore Feasibility of Manned Base

Carnegie Mellon Unveils Lunar Rover "Andy"

TECH SPACE
Australian university students aim to generate first 'breathable' air on Mars

Opportunity drives on in no-flash mode

Flying over Becquerel

New idea for transporting spacecraft could ease trip to Mars

TECH SPACE
XCOR Announces Further Progress on XCOR Lynx Spacecraft

NASA releases video of Orion spacecraft re-entry from astronaut's perspective

Russia, US to Cooperate on Orion Spacecraft Modernization

NASA Voyager: 'Tsunami Wave' Still Flies Through Interstellar Space

TECH SPACE
China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

China develops new rocket for manned moon mission: media

Service module of China's returned lunar orbiter reaches L2 point

TECH SPACE
NASA, SpaceX Update Launch of Fifth SpaceX Resupply Mission to ISS

Politics no problem, say US and Russian spacefarers

Bright lights: big cities at night

ISS Experiment May Hold Key to Alzheimer's Cause

TECH SPACE
SpaceX postpones launch after rocket 'issues'

SES: Astra 2G ready for Dec 28 Proton launch

US Space Launcher to Get 60 Russian Engines in $1Bln Deal

State Spaceports Receive Federal Funding

TECH SPACE
Kepler Proves It Can Still Find Planets

NASA's Kepler Reborn, Makes First Exoplanet Find of New Mission

Super-Earth spotted by ground-based telescope, a first

Astronomers spot Pluto-size objects swarming about young sun

TECH SPACE
NASA just emailed the space station a new socket wrench

Inmarsat-2 F2 satellite retired after more than 23.5 years of GEO operations

Penn Research Outlines Basic Rules for Construction With a Type of Origami

Danish radars for new British offshore patrol boats




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.