Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. 24/7 Space News .




NANO TECH
Paper-and-scissors technique rocks the nano world
by Staff Writers
Chicago IL (SPX) Nov 18, 2012


File image.

Sometimes simplicity is best. Two Northwestern University researchers have discovered a remarkably easy way to make nanofluidic devices: using paper and scissors. And they can cut a device into any shape and size they want, adding to the method's versatility.

Nanofluidic devices are attractive because their thin channels can transport ions - and with them a higher than normal electric current - making the devices promising for use in batteries and new systems for water purification, harvesting energy and DNA sorting.

The "paper-and-scissors" method one day could be used to manufacture large-scale nanofluidic devices without relying on expensive lithography techniques.

The Northwestern duo found that simply stacking up sheets of the inexpensive material graphene oxide creates flexible "paper" with tens of thousands of very useful channels. A tiny gap forms naturally between neighboring sheets, and each gap is a channel through which ions can flow.

Using a pair of regular scissors, the researchers simply cut the paper into a desired shape, which, in the case of their experiments, was a rectangle.

"In a way, we were surprised that these nanochannels actually worked, because creating the device was so easy," said Jiaxing Huang, who conducted the research with postdoctoral fellow Kalyan Raidongia. "No one had thought about the space between sheet-like materials before. Using the space as a flow channel was a wild idea. We ran our experiment at least 10 times to be sure we were right."

Huang is an assistant professor of materials science and engineering and the Morris E. Fine Junior Professor in Materials and Manufacturing in the McCormick School of Engineering and Applied Science.

"Many people have studied graphene oxide papers but mainly for their mechanical properties or for making graphene," Huang said. "Here we show that graphene oxide paper naturally generates numerous nanofluidic ion channels when layered."

The findings are published in the Journal of the American Chemical Society.

To create a working device, the researchers took a pair of scissors and cut a piece of their graphene oxide paper into a centimeter-long rectangle. They then encased the paper in a polymer, drilled holes to expose the ends of the rectangular piece and filled up the holes with an electrolyte solution (a liquid containing ions) to complete the device.

Next they put electrodes at both ends and tested the electrical conductivity of the device. Huang and Raidongia observed higher than normal current, and the device worked whether flat or bent.

The nanochannels have significantly different - and desirable - properties from their bulk channel counterparts, Huang said. The nanochannels have a concentrating effect, resulting in an electric current much higher than those in bulk solutions.

Graphene oxide is basically graphene sheets decorated with oxygen-containing groups. It is made from inexpensive graphite powders by chemical reactions known for more than a century.

Scaling up the size of the device is simple. Tens of thousands of sheets or layers create tens of thousands of nanochannels, each channel approximately one nanometer high. There is no limit to the number of layers - and thus channels - one can have in a piece of paper.

To manufacture very massive arrays of channels, one only needs to put more graphene oxide sheets in the paper or to stack up many pieces of paper. A larger device, of course, can handle larger quantities of electrolyte.

The paper is titled "Nanofluidic Ion Transport through Reconstructed Layered Materials."

.


Related Links
Northwestern University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





NANO TECH
What if the nanoworld slides
Trieste, Italy (SPX) Nov 15, 2012
A study published by Andrea Vanossi, Nicola Manini and Erio Tosatti - three SISSA researchers - in PNAS (Proceedings of the National Academy of Sciences) provides a new tool to better understand how sliding friction works in nanotribology, through colloidal crystals. By theoretically studying these systems of charged microparticles, researchers are able to analyze friction forces through m ... read more


NANO TECH
China's Chang'e-3 to land on moon next year

Moon crater yields impact clues

Study: Moon basin formed by giant impact

NASA's LADEE Spacecraft Gets Final Science Instrument Installed

NANO TECH
NASA Rover Providing New Weather and Radiation Data About Mars

CU LASP package ready for MAVEN integration bound for Mars

Instrument Delivered for NASA's Upcoming Mars Mission

Melt water on Mars could sustain life

NANO TECH
NASA Selects Information Technology Flight Operations Support Contract

SciTechTalk: All work and no play?

Get some bed rest - all 21 days of it

Latest China military hardware displayed at airshow

NANO TECH
Mr Xi in Space

China plans manned space launch in 2013: state media

China to launch manned spacecraft

Tiangong 1 Parked And Waiting As Shenzhou 10 Mission Prep Continues

NANO TECH
Space station command changes

Russia restores space contact after cable rupture

Russia loses contact with satellites, space station

Cut in Russian link to space station not serious: NASA

NANO TECH
Arianespace's fourth Spaceport mission with Soyuz ready for fueling

Ariane 5's sixth launch of 2012

Ariane 5 is poised for Arianespace's launch with the EUTELSAT 21B and Star One C3 satellites

Ariane 5 orbits EUTELSAT 21B and Star One C3 satellites

NANO TECH
Lowell astronomer, collaborators point the way for exoplanet search

A Reborn Planetary Nebula

Lost in Space: Rogue Planet Spotted?

Lowell Astronomer, Collaborators Point The Way For Exoplanet Search

NANO TECH
Titan is also a green powerhouse

Google's Android is eating Apple's lunch

AVX Introduces SMD Tantalum Chip Capacitors For Aerospace Applications

Google's Android is eating Apple's lunch




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement