Subscribe free to our newsletters via your
. 24/7 Space News .




EARLY EARTH
Oxygen's ups and downs in the early atmosphere and ocean
by Staff Writers
Riverside CA (SPX) Oct 26, 2012


This is a carbonate rock in Zimbabwe used to trace sulfate levels in the Earth's early oceans. Credit: Lyons Lab, UC Riverside.

Most researchers imagine the initial oxygenation of the ocean and atmosphere to have been something like a staircase, but with steps only going up. The first step, so the story goes, occurred around 2.4 billion years ago, and this, the so-called Great Oxidation Event, has obvious implications for the origins and evolution of the first forms of eukaryotic life.

The second big step in this assumed irreversible rise occurred almost two billion years later, coinciding with the first appearances and earliest diversification of animals.

Now a team led by geochemists at the University of California, Riverside challenges the simple notion of an up-only trend for early oxygen and provides the first compelling direct evidence for a major drop in oxygen after the first rise.

"Our group is among a subset of scientists who imagine that oxygen, once it began to accumulate in the ocean-atmosphere system, may have ultimately risen to very high levels about 2.3-2.2 billion years ago, perhaps even to concentrations close to what we see today," said Timothy Lyons, a professor of biogeochemistry and the principal investigator of the project.

"But unlike the posited irreversible rise favored by many, our new data point convincingly to an equally impressive, and still not well understood, fall in oxygen about 200 million years later."

According to Lyons, this drop in oxygen may have ushered in more than a billion years that were marked by a return to low-oxygen concentrations at Earth's surface, including the likelihood of an oxygen-free deep ocean.

"It is this condition that may have set the environmental stage and ultimately the clock for the advance of eukaryotic organisms and eventually animals," he said.

Study results appear online in the Proceedings of the National Academy of Sciences.

"The time window between 2.3 and 2.1 billion years ago is famous for the largest and longest-lived positive carbon isotope excursion in Earth history," said Noah Planavsky, a recent Ph.D. graduate from UC Riverside, current postdoctoral fellow at Caltech, and first author of the research paper.

He explained that carbon isotopes are fractionated during photosynthesis. When organic matter is buried, oxygen is released and rises in the biosphere. The burial of organic matter is tracked by the positive or heavy isotopic composition of carbon in the ocean.

"Some workers have attributed the carbon isotope excursion to something other than organic burial and associated release of oxygen," Planavsky said.

"We studied the sulfur isotope composition of the same rocks used for the carbon isotope analyses - from Canada, South Africa, the U.S., and Zimbabwe - and demonstrated convincingly that the organic burial model is the best answer."

The researchers' sulfur data point to high sulfate concentrations in the ocean, which, like today, is a classic fingerprint of high oxygen levels in the ocean and atmosphere.

Sulfate, the second most abundant negatively charged ion in the ocean today, remains high when the mineral pyrite oxidizes easily on the continents and is buried in relatively small amounts in the oxygen-rich ocean.

"What is equally impressive is that the rise in oxygen was followed by a dramatic fall in sulfate and therefore oxygen," Lyons said. "Why the rise and fall occurred and how that impacted the billion years or more of ocean chemistry that followed and the life within that ocean are hot topics of research."

The research team is thrilled to have found strong chemical evidence for oxygen variability on the early Earth.

"The idea that oxygen levels at Earth's surface went up and down must be vital in any effort to understand the links between environmental and biological evolution on broad, geologic time scales," Planavsky said.

He and Lyons were joined in the study by Andrey Bekker at the University of Manitoba, Axel Hofmann at the University of Johannesburg and Jeremy Owens at UCR.

.


Related Links
University of California - Riverside
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARLY EARTH
100 million-year-old coelacanth discovered in Texas is new fish species from Cretaceous
Dallas TX (SPX) Oct 26, 2012
A new species of coelacanth fish has been discovered in Texas. Pieces of tiny fossil skull found in Fort Worth have been identified as 100 million-year-old coelacanth bones, according to paleontologist John F. Graf, Southern Methodist University, Dallas. The coelacanth has one of the longest lineages - 400 million years - of any animal. It is the fish most closely related to vertebrates, includi ... read more


EARLY EARTH
NASA's LADEE Spacecraft Gets Final Science Instrument Installed

Astrium presents results of its study into automatic landing near the Moon's south pole

European mission to search for moon water

Model reconciles Lunar Earth composition with giant impact theory

EARLY EARTH
Opportunity Undertakes Survey Drives Of Local Area

Assessing Drop-Off to Mars Rover's Observation Tray

Valles Marineris - the largest canyon in the Solar System

Curiosity Rover Collects Fourth Scoop of Martian Soil

EARLY EARTH
Space daredevil Baumgartner is 'officially retired'

NASA must reinvest in nanotechnology research, according to new Rice University paper

Austrian space diver no stranger to danger

Baumgartner feat boosts hopes for imperilled astronauts

EARLY EARTH
China to launch 11 meteorological satellites by 2020

China makes progress in spaceflight research

Patience for Tiangong

China launches civilian technology satellites

EARLY EARTH
New crew docks with ISS: Russia

ISS Crew Gets Ready for New Expedition 33 Trio

New ISS Crew Confirmed

Russia launches three astronauts to ISS

EARLY EARTH
Pleiades 1B joins its launcher at the Spaceport for Arianespace's Soyuz mission in November

S. Korea readies third bid to join global space club

Brazil eyes closer space cooperation with Ukraine

S. Korea plans third rocket launch bid Friday

EARLY EARTH
New Study Brings a Doubted Exoplanet 'Back from the Dead'

New small satellite will study super-Earths for ESA

Most Planetary Systems are 'Flatter than Pancakes'

Glitch could end NASA planet search

EARLY EARTH
A new take on the Midas touch - changing the colour of gold

Northrop Grumman Matures Laser Threat Terminator Technology to Address Emerging Threats

US DoE's Ames Laboratory improving process to recycle rare-earth materials

Droplet response to electric voltage in solids exposed




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement