Subscribe free to our newsletters via your
. 24/7 Space News .




EXO LIFE
Only above-water microbes play a role in cave development
by Staff Writers
University Park PA (SPX) Sep 03, 2015


This image shows researchers working in a cave.

Only the microbes located above the water's surface contribute to the development of hydrogen-sulfide-rich caves, suggests an international team of researchers. Since 2004, researchers have been studying the Frasassi cave system, an actively developing limestone cave system located 1500 feet underground in central Italy.

Limestone caves can form when solid limestone dissolves after coming in contact with certain types of acids. The resulting void is the cave system.

"We knew from previous research that microbes do play a role in cave development," said Jennifer Macalady, associate professor of geosciences, Penn State and co-author of a paper published in Chemical Geology. "What we were trying to assess was the extent of that contribution, which would help us understand how caves all over the world, as well as on other worlds, form."

In hydrogen-sulfide-rich caves, microbes "eat" the hydrogen sulfide through a process known as aerobic respiration, Macalady said. The byproduct of this process is the creation of sulfuric acid, which has the potential to dissolve limestone and contribute to cave growth.

"The main goal of our study was to investigate what happened to hydrogen sulfide in the cave, because when the microbes use hydrogen sulfide for energy, this, along with oxygen, leads to the production of sulfuric acid," said Macalady.

The researchers measured oxygen levels and the amount of chemicals degassing - changing from liquid to gas state - throughout several parts of the cave system. The Frasassi system has cave pathways that formed 10,000 to 100,000 years ago as well as currently actively forming cave pathways, allowing the researchers to compare their measurements and identify the factors contributing to active development.

"What we found is that in certain conditions, the hydrogen sulfide in the water escapes as a gas into the air above the water instead of being 'eaten' by microbes below the water surface," said Macalady. "As a result, the underwater microbes only partially burned hydrogen sulfide. Instead of creating a byproduct of sulfuric acid, they created pure sulfur as a byproduct, which is not corrosive to limestone."

In contrast, the microbes above the water's surface completely "ate" the hydrogen sulfide. This process results in the creation of sulfuric acid, which dissolves limestone and contributes to cave growth.

Macalady says that the results would apply to all limestone caves that are rich in hydrogen sulfide, which includes more well-known caves such as Carlsbad Caverns and Lechuguilla Cave in New Mexico and Kap-Kutan Cave in Turkmenistan.

Co-authors on the findings include Daniel Jones, former Penn State graduate student now at the University of Minnesota; Lubos Polerecky, Max Planck Institute for Marine Microbiology and Utrecht University; Sandro Galdenzi; and Brian Dempsey, Penn State Department of Civil and Environmental Engineering.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Penn State
Life Beyond Earth
Lands Beyond Beyond - extra solar planets - news and science






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EXO LIFE
Interstellar seeds could create oases of life
Boston MA (SPX) Aug 29, 2015
We only have one example of a planet with life: Earth. But within the next generation, it should become possible to detect signs of life on planets orbiting distant stars. If we find alien life, new questions will arise. For example, did that life arise spontaneously? Or could it have spread from elsewhere? If life crossed the vast gulf of interstellar space long ago, how would we tell? Ne ... read more


EXO LIFE
Russia Gets Ready for New Moon Landing

ASU chosen to lead lunar CubeSat mission

Russia's moon landing plan hindered by financial distress

Research May Solve Lunar Fire Fountain Mystery

EXO LIFE
ASU instruments help scientists probe ancient Mars atmosphere

Opportunity brushes a rock and conducts in-situ studies

Destination Red Planet: Will Billionaires Fund a Private Mars Colony

One year and counting: Mars isolation experiment begins

EXO LIFE
In Virginia, TechShop lets 'makers' tinker, innovate

New Russian Spaceship to Be Ready Ahead of Schedule

Annoying? US 'That Kissed the Moon' Has to Pay Russia for Space Flights

French woman wins disability grant for 'gadget allergy'

EXO LIFE
Progress for Tiangong 2

China rocket parts hit villager's home: police, media

China's "sky eyes" help protect world heritage Angkor Wat

China's space exploration potential has US chasing its own tail

EXO LIFE
ISS Crew Redocks Soyuz Spacecraft

CALET docks on the International Space Station

Astronaut Andreas to try sub-millimetre precision task on Earth from orbit

Japan's cargo craft delivers supplies, whiskey to space station

EXO LIFE
SpaceX delays next launch after blast

GSLV Launches India's Latest Communication Satellite GSAT-6

Preparations with both passengers ongoing at Kourou

Proton-M Brings Satellite Into Orbit for First Time Since May Accident

EXO LIFE
Earth's mineralogy unique in the cosmos

A new model of gas giant planet formation

Planetary pebbles were building blocks for the largest planets

Solar System formation don't mean a thing without that spin

EXO LIFE
The multiferroic sandwich

Microscopic animals inspire innovative glass research

Team harnesses intense X-ray beam to observe unusual phenomenon

New material science research may advance tech tools




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.