Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Observing the galaxy distribution when the universe was half its current age
by Staff Writers
Manchester, UK (SPX) Apr 05, 2012


The record of baryon acoustic oscillations (white rings) in galaxy maps helps astronomers retrace the history of the expanding universe. These schematic images show the universe at three different times. The false-colour image on the right shows the "cosmic microwave background," a record of what the very young universe looked like, 13.7 billion years ago. The small density variations present then have grown into the clusters, walls, and filaments of galaxies that we see today. These variations included the signal of the original baryon acoustic oscillations (white ring, right).
As the universe has expanded (middle and left), evidence of the baryon oscillations has remained, visible in a "peak separation" between galaxies (the larger white rings). The SDSS-III results announced today (middle) are for galaxies 5.5 billion light-years distant, at the time when dark energy turned on. Comparing them with previous results from galaxies 3.8 billion light-years away (left) measures how the universe has expanded with time. Credit: E. M. Huff, the SDSS-III team, and the South Pole Telescope team. Graphic by Zosia Rostomian. For a larger version of this image please go here.

At the UK-Germany National Astronomy Meeting NAM2012, the Baryon Oscillation Spectroscopic Survey (BOSS) team announced the most accurate measurement yet of the distribution of galaxies between five and six billion years ago.

This was the key 'pivot' moment at which the expansion of the universe stopped slowing down due to gravity and started to accelerate instead, due to a mysterious force dubbed "dark energy".

The nature of this "dark energy" is one of the big mysteries in cosmology today, and scientists need precise measurements of the expansion history of the universe to unravel this mystery - BOSS provides this kind of data.

In a set of six joint papers presented, the BOSS team, an international group of scientists with the participation of the Max Planck Institute of Extraterrestrial Physics in Garching, Germany, used these data together with previous measurements to place tight constraints on various cosmological models.

The BOSS survey, which is a part of the Sloan Digital Sky Survey (SDSS-III), was started in 2009 to probe the universe at a time when dark energy started to dominate. The survey will continue until 2014, collecting data for 1.35 million galaxies with a custom-designed new spectrograph on the 2.5-metre Sloan Telescope at the Apache Point Observatory in New Mexico, USA.

In the first year-and-a-half, it has already mapped the three-dimensional positions of more than a quarter of a million galaxies spread across about one tenth of the sky, yielding the most accurate and complete map of the galaxy distribution up to a distance of about 6 billion light years.

Galaxies form a "cosmic web" with a variety of structures which encode valuable information about our universe. One particular feature, the so-called "Baryonic Acoustic Oscillations" (BAO), has been subject of much interest from scientists as it provides them with a "standard rod". BAO are a relic of the early phases of the universe, when it was a hot and dense "soup" of particles.

Small variations of density travelled through this "soup" as pressure-driven (sound) waves. As the universe expanded and cooled, the pressure dropped, causing these waves to stall after they had traveled about 500 million light years.

These frozen waves imprinted a particular signature on the matter distribution and are visible in the galaxy map today: it is in fact slightly more probable to find pairs of galaxies separated by this scale than at smaller or larger distances.

Measurements of the apparent size of the BAO scale in the galaxy distribution then provide information about cosmic distances. Combined with the measurement of the galaxies" redshift - a measure for how fast they move away as a result of the cosmic expansion - scientists can then reconstruct the expansion history of the universe.

The new BOSS data, combined with previous analyses, can now constrain the parameters of the standard cosmological model to an accuracy of better than five per cent. "All the different lines of evidence point to the same explanation," says Dr. Ariel Sanchez, scientist at the Max Planck Institute for Extraterrestrial Physics and lead author of one of the six papers released.

"The dark energy is consistent with Einstein's cosmological constant: a small but irreducible energy continually stretching space itself, driving the accelerated expansion of the universe."

Besides dark energy, the information encoded in the large-scale distribution of galaxies can be used to obtain robust constraints on other important physical parameters such as the curvature of the universe, the neutrino mass, or the phase of inflation in the very early universe. "Current observations show that the universe has to be flat, to an accuracy better than 0.5 per cent," says Ariel Sanchez.

"And at the same time as we measure such a global parameter on a cosmic scale, we can also get information about neutrinos on the smallest scales in the cosmos."

Neutrinos are tiny, subatomic particles. Even though a number of experiments have shown that they must have mass, scientists do not know how much they actually weigh, as it is difficult to measure this in a laboratory.

However, as an additional component in the hot, early phase of the universe the neutrinos affect the growth of structures. The galaxy distribution probed by BOSS provides information about the maximum mass that these neutrinos are allowed to have. "This is really the connection of two extreme worlds, the very large and the very small", adds Ariel Sanchez.

The quality of the new data even provided the BOSS team with new clues about cosmic inflation, a period of time shortly after the Big Bang during which the universe expanded at an incredible rate.

During cosmic inflation, small regions of space were blown out to form our entire observable universe. At the same time, tiny quantum fluctuations also expanded and became the seeds of the structures that the BOSS data show us.

"There is a real zoo of alternative models of inflation. With BOSS we get important new clues about the inflationary phase of the universe, which allows us to pare down the market of available models", remarks Ariel Sanchez.

So far, all measurements are highly consistent with the standard cosmological model, which is made up of a few per cent ordinary matter, about a quarter of dark matter, and the rest dark energy.

But Ariel Sanchez is cautious: "This is just the beginning. We can expect much tighter constraints once we have the full five years of BOSS data. There are also a number of future projects, such as EUCLID, that will provide even better measurements, bringing us one step closer to finding answers to the big open questions in cosmology."

.


Related Links
Royal Astronomical Society
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
NASA's SOFIA Captures Image of Dying, Outflowing Star
Pasadena CA (JPL) Apr 05, 2012
Researchers using NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) have captured an infrared image of the last exhalations of a dying sun-like star. The object observed by SOFIA, planetary nebula Minkowski 2-9, or M2-9 for short, is seen in this three-color composite image. "The SOFIA images provide our most complete picture of the outflowing material on its way to being rec ... read more


STELLAR CHEMISTRY
Earth's Other Moons

Flying Formation - Around the Moon at 3,600 MPH

NASA's Grail MoonKam Returns First Student-Selected Lunar Images

Ecliptic "MoonKAM" Systems Begin Operations in Lunar Orbit

STELLAR CHEMISTRY
Mars missions race, India takes lead

12-Mile-High Martian Dust Devil Caught In Act

The sounds of Mars and Venus are revealed for the first time

Dusty, Acidic Glaciers Could Explain Layered Deposits on Mars

STELLAR CHEMISTRY
'Smart City' ambitions for quake-struck Italian town

Boeing Completes Parachute Drop Test of Crew Space Transportation Spacecraft

New Study Calls For Recognition of Private Property Claims in Space

Conservatives' trust in science has fallen dramatically since mid-1970s

STELLAR CHEMISTRY
China's Lunar Docking

Shenzhou-9 may take female astronaut to space

China to launch 100 satellites during 2011-15

Three for Tiangong

STELLAR CHEMISTRY
Busy first days for ATV Edoardo Amaldi

Space Savings for ISS Science Samples

Europe's ATV-3 Space Freighter Adjusts ISS Orbit

Aerojet Propulsion Helps Deliver Astronaut Care Packages

STELLAR CHEMISTRY
Spy satellite-carrying rocket blasts off

Orbital Receives Order for Minotaur I Space Launch Vehicle From USAF

Space Launch System Program Completes Step One of Combined Milestone Reviews

Russian Proton-M Puts Military Satellite into Orbit

STELLAR CHEMISTRY
NASA's Kepler Mission Awarded Mission Extension

A planetary system from the early Universe

Discovery of an 'alien earth' imminent?

Getting to Know the Goldilocks Planet

STELLAR CHEMISTRY
Court revives Viacom copyright suit against YouTube

Google gives glimpse of Internet glasses

Handover of Japan-built Radar to NASA

New understanding of how materials change when rapidly heated




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement