Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. 24/7 Space News .




SPACE SCOPES
NuSTAR telescope takes first peek into core of supernova
by Staff Writers
Berkeley CA (SPX) Feb 20, 2014


Superimposed images of the Cas A supernova remnant taken by NASA's Chandra and NuSTAR orbiting telescopes. Red and green are X-ray emissions detected by Chandra of heated iron and silicon/magnesium, respectively, while blue shows NuSTAR's map of the distribution of titanium produced in the core of the explosion 340 years ago. NASA/NuSTAR image.

Astronomers for the first time have peered into the heart of an exploding star in the final minutes of its existence. The feat is one of the primary goals of NASA's NuSTAR mission, launched in June 2012 to measure high-energy X-ray emissions from exploding stars, or supernovae, and black holes, including the massive black hole at the center of our Milky Way Galaxy.

The NuSTAR team reported in this week's issue of the journal Nature the first map of titanium thrown out from the core of a star that exploded in 1671. That explosion produced the beautiful supernova remnant known as Cassiopeia A (Cas A).

The well-known supernova remnant has been photographed by many optical, infrared and X-ray telescopes in the past, but these revealed only how the star's debris collided in a shock wave with the surrounding gas and dust and heated it up.

NuSTAR has produced the first map of high-energy X-ray emissions from material created in the actual core of the exploding star: the radioactive isotope titanium-44, which was produced in the star's core as it collapsed to a neutron star or black hole. The energy released in the core collapse supernova blew off the star's outer layers, and the debris from this explosion has been expanding outward ever since at 5,000 kilometers per second.

"This has been a holy grail observation for high energy astrophysics for decades," said coauthor and NuSTAR investigator Steven Boggs, UC Berkeley professor and chair of physics. "For the first time we are able to image the radioactive emission in a supernova remnant, which lets us probe the fundamental physics of the nuclear explosion at the heart of the supernova like we have never been able to do before."

"Supernovae produce and eject into the cosmos most of the elements are important to life as we know it," said UC Berkeley professor of astronomy Alex Filippenko, who was not part of the NuSTAR team. "These results are exciting because for the first time we are getting information about the innards of these explosions, where the elements are actually produced."

Boggs says that the information will help astronomers build three-dimensional computer models of exploding stars, and eventually understand some of the mysterious characteristics of supernovae, such as jets of material ejected by some. Previous observations of Cas A by the Chandra X-ray telescope, for example, showed jets of silicon emerging from the star.

"Stars are spherical balls of gas, and so you might think that when they end their lives and explode, that explosion would look like a uniform ball expanding out with great power," said Fiona Harrison, the principal investigator of NuSTAR at the California Institute of Technology. "Our new results show how the explosion's heart, or engine, is distorted, possibly because the inner regions literally slosh around before detonating."

Expanding supernova remnant
Cas A is about 11,000 light years from Earth and the most studied nearby supernova remnant. In the 343 years since the star exploded, the debris from the explosion has expanded to about 10 light years across, essentially magnifying the pattern of the explosion so that it can be seen from Earth.

Earlier observations of the shock-heated iron in the debris cloud led some astronomers to think that the explosion was symmetric, that is, equally powerful in all directions. Boggs noted, however, that the origins of the iron are so unclear that its distribution may not reflect the explosion pattern from the core.

"We don't know whether the iron was produced in the supernova explosion, whether it was part of the star when it originally formed, if it is just in the surrounding material, or even if the iron we see represents the actual distribution of iron itself, because we wouldn't see it if it were not heated in the shock," he said.

The new map of titanium-44, which does not match the distribution of iron in the remnant, strongly suggests that there is cold iron in the interior that Chandra does not see. Iron and titanium are produced in the same place in the star, said UC Berkeley research physicist Andreas Zoglauer, so they should be similarly distributed in the explosive debris.

"The surprising thing, which we suspected all along, is that the iron does not match titanium at all, so the iron we see is not mapping the distribution of elements produced in the core of the explosion," Boggs said.

He and his UC Berkeley colleagues also launch balloon-borne high-energy X-ray and gamma-ray detectors to record the radioactive decay of other elements, including iron, in supernovae to learn more about the nuclear reactions that take place during these brief, catastrophic explosions.

"The radioactive nuclei act as a probe of supernova explosions and allow us to see directly into densities and temperatures where nuclear processes are going that we don't have access to in terrestrial laboratories," Boggs said.

NuSTAR continues to observe radioactive titanium-44 emissions from a handful of other supernova remnants to determine if the pattern holds for other supernovae as well. These supernova remnants must be close enough to Earth for the debris structure to be seen, yet young enough for radioactive elements like titanium - which has a 60-day half-life - to still be emitting high-energy X-rays.

NuSTAR mission instrument manager William Craig of UC Berkeley's Space Sciences Laboratory is also a coauthor of the Nature paper. Zoglauer conducted computer simulations of NuSTAR's detectors before launch, and continues to monitor the radioactive background in the detectors to correct observations.

.


Related Links
University of California - Berkeley
Space Telescope News and Technology at Skynightly.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





SPACE SCOPES
The measure of the universe through doppler lensing
Sydney, Australia (TCM) Feb 18, 2014
There are so many galaxies in the universe that if you point a telescope in any direction in the night's sky you are bound to see some. Just look at the image (above) of the sky as provided by the Hubble telescope. It shows so many galaxies of different sizes and shapes, but which ones are really larger? And which ones are simply closer to us therefore appearing as if they were bigger than ... read more


SPACE SCOPES
Japan's Pocari Sweat bound for the moon: maker

Lunar ownership laws: a future necessity?

Chang'e-2 lunar probe travels 70 mln km

LADEE Sends Its First Images of the Moon Back to Earth

SPACE SCOPES
NASA Mars Orbiter Views Opportunity Rover on Ridge

Curiosity Adds Reverse Driving for Wheel Protection

Curiosity Drives On After Crossing Martian Dune

The World Above and Beyond

SPACE SCOPES
Orion Underway Recovery Testing Begins off the Coast of California

Inside astronaut Alexander's head

NASA Welcomes University Participants to Develop Science Payloads

Boeing Commercial Crew Program Passes NASA Hardware, Software Reviews

SPACE SCOPES
No Call for Yutu

What's up, Yutu

China's Jade Rabbit rover comes 'back to life'

Yutu Awakes

SPACE SCOPES
NASA, International Space Station Partners Announce Future Crew Members

Andrews Space Cargo Module Power Unit Provides Power For Payloads Bound For ISS

Russian Progress M-22M docks with ISS following fast rendezvous

Russian Resupply Spacecraft Begins Expedited Flight to Station

SPACE SCOPES
Arianespace to launch OPTSAT 3000 and VENuS satellites

New Russian Rocket Mock-Up Rolls Out to Launch Pad

Lighter engines a headache for satellite launcher Ariane

ILS Proton Successfully Launches TURKSAT-4A for Turksat

SPACE SCOPES
Scientist: Exoplanet research needs less hype, more patience

Europe sets plans for 2024 planet-hunting mission

ESA selects planet-hunting PLATO mission

Rife with hype, exoplanet study needs patience and refinement

SPACE SCOPES
Ancient helium rising to the surface in Yellowstone National Park

Space agency studying ways to capture derelict satellites, space junk

Google unveils 'Project Tango' 3D smartphone platform

Gecko-inspired Adhesion: Self-cleaning and Reliable




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.